These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36561279)

  • 1. Selected machine learning of HOMO-LUMO gaps with improved data-efficiency.
    Mazouin B; Schöpfer AA; von Lilienfeld OA
    Mater Adv; 2022 Nov; 3(22):8306-8316. PubMed ID: 36561279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alchemical and structural distribution based representation for universal quantum machine learning.
    Faber FA; Christensen AS; Huang B; von Lilienfeld OA
    J Chem Phys; 2018 Jun; 148(24):241717. PubMed ID: 29960351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An orbital-based representation for accurate quantum machine learning.
    Karandashev K; von Lilienfeld OA
    J Chem Phys; 2022 Mar; 156(11):114101. PubMed ID: 35317562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Machine Learning in Materials Prediction: A Case Study on ABO
    Naseri M; Gusarov S; Salahub DR
    J Phys Chem Lett; 2023 Aug; 14(31):6940-6947. PubMed ID: 37498277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum machine learning with differential privacy.
    Watkins WM; Chen SY; Yoo S
    Sci Rep; 2023 Feb; 13(1):2453. PubMed ID: 36774365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward DMC Accuracy Across Chemical Space with Scalable Δ-QML.
    Huang B; von Lilienfeld OA; Krogel JT; Benali A
    J Chem Theory Comput; 2023 Mar; 19(6):1711-1721. PubMed ID: 36857531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate GW frontier orbital energies of 134 kilo molecules.
    Fediai A; Reiser P; Peña JEO; Friederich P; Wenzel W
    Sci Data; 2023 Sep; 10(1):581. PubMed ID: 37669957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations.
    Khan D; Heinen S; von Lilienfeld OA
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Optimization of Training Sets for Improved Machine Learning Models of Molecular Properties.
    Browning NJ; Ramakrishnan R; von Lilienfeld OA; Roethlisberger U
    J Phys Chem Lett; 2017 Apr; 8(7):1351-1359. PubMed ID: 28257210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries.
    Allam O; Cho BW; Kim KC; Jang SS
    RSC Adv; 2018 Nov; 8(69):39414-39420. PubMed ID: 35558035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.
    Pereira F; Xiao K; Latino DA; Wu C; Zhang Q; Aires-de-Sousa J
    J Chem Inf Model; 2017 Jan; 57(1):11-21. PubMed ID: 28033004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Machine Learning in Chemical Compound Space.
    Huang B; von Lilienfeld OA
    Chem Rev; 2021 Aug; 121(16):10001-10036. PubMed ID: 34387476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Many-Body Green's Functions for Molecular Excitation Spectra.
    Venturella C; Hillenbrand C; Li J; Zhu T
    J Chem Theory Comput; 2024 Jan; 20(1):143-154. PubMed ID: 38150268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited.
    Zaspel P; Huang B; Harbrecht H; von Lilienfeld OA
    J Chem Theory Comput; 2019 Mar; 15(3):1546-1559. PubMed ID: 30516999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts.
    Su A; Zhang X; Zhang C; Ding D; Yang YF; Wang K; She YB
    Phys Chem Chem Phys; 2023 Apr; 25(15):10536-10549. PubMed ID: 36987933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalization in quantum machine learning from few training data.
    Caro MC; Huang HY; Cerezo M; Sharma K; Sornborger A; Cincio L; Coles PJ
    Nat Commun; 2022 Aug; 13(1):4919. PubMed ID: 35995777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties.
    Christensen AS; von Lilienfeld OA
    Chimia (Aarau); 2019 Dec; 73(12):1028-1031. PubMed ID: 31883556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.