These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36561671)
1. Optimal control strategy analysis for an human-animal brucellosis infection model with multiple delays. Wu M; Abdurahman X; Teng Z Heliyon; 2022 Dec; 8(12):e12274. PubMed ID: 36561671 [TBL] [Abstract][Full Text] [Related]
2. Asymptotic behavior of HIV-1 epidemic model with infinite distributed intracellular delays. Ali N; Zaman G Springerplus; 2016; 5():324. PubMed ID: 27066352 [TBL] [Abstract][Full Text] [Related]
3. Threshold Dynamics of an Naim M; Lahmidi F; Namir A Differ Equ Dyn Syst; 2021 Sep; ():1-14. PubMed ID: 34539106 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Analysis and Optimal Control of Rumor Spreading Model with Recurrence and Individual Behaviors in Heterogeneous Networks. Tong X; Jiang H; Chen X; Yu S; Li J Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455127 [TBL] [Abstract][Full Text] [Related]
5. Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination. Lin J; Xu R; Tian X J Biol Dyn; 2019 Dec; 13(1):69-102. PubMed ID: 30696390 [TBL] [Abstract][Full Text] [Related]
6. Asymptotic analysis of endemic equilibrium to a brucellosis model. Li MT; Pei X; Zhang J; Li L Math Biosci Eng; 2019 Jun; 16(5):5836-5850. PubMed ID: 31499740 [TBL] [Abstract][Full Text] [Related]
7. Stability analysis and optimal control of a fractional-order model for African swine fever. Shi R; Li Y; Wang C Virus Res; 2020 Oct; 288():198111. PubMed ID: 32791169 [TBL] [Abstract][Full Text] [Related]
8. Sveir epidemiological model with varying infectivity and distributed delays. Wang J; Huang G; Takeuchi Y; Liu S Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816 [TBL] [Abstract][Full Text] [Related]
9. Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Lin JZ; Xu R; Tian XH Math Biosci Eng; 2019 May; 16(5):4339-4358. PubMed ID: 31499665 [TBL] [Abstract][Full Text] [Related]
10. Modelling and optimal control for Chikungunya disease. El Hajji M Theory Biosci; 2021 Feb; 140(1):27-44. PubMed ID: 33128733 [TBL] [Abstract][Full Text] [Related]
11. Global stability of an HIV infection model with saturated CTL immune response and intracellular delay. Ren J; Xu R; Li L Math Biosci Eng; 2020 Nov; 18(1):57-68. PubMed ID: 33525080 [TBL] [Abstract][Full Text] [Related]
12. An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions. Xu R; Tian X; Zhang S J Biol Dyn; 2018 Dec; 12(1):89-117. PubMed ID: 29173134 [TBL] [Abstract][Full Text] [Related]
13. Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Tian XH; Xu R; Lin JZ Math Biosci Eng; 2019 Aug; 16(6):7850-7882. PubMed ID: 31698644 [TBL] [Abstract][Full Text] [Related]
14. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission. Hou Q; Qin HY Math Biosci Eng; 2019 Apr; 16(4):3111-3129. PubMed ID: 31137253 [TBL] [Abstract][Full Text] [Related]
15. Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks. Cao B; Guan G; Shen S; Zhu L Eur Phys J Plus; 2023; 138(5):402. PubMed ID: 37200578 [TBL] [Abstract][Full Text] [Related]
16. Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Zhou XR; Zhang L; Zheng T; Li HL; Teng ZD Math Biosci Eng; 2020 Jun; 17(5):4527-4543. PubMed ID: 33120517 [TBL] [Abstract][Full Text] [Related]
17. Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Bai N; Xu R Math Biosci Eng; 2021 Feb; 18(2):1689-1707. PubMed ID: 33757205 [TBL] [Abstract][Full Text] [Related]
18. A mathematical investigation of an "SVEIR" epidemic model for the measles transmission. Hajji ME; Albargi AH Math Biosci Eng; 2022 Jan; 19(3):2853-2875. PubMed ID: 35240810 [TBL] [Abstract][Full Text] [Related]
19. Design of a nonlinear model for the propagation of COVID-19 and its efficient nonstandard computational implementation. Rafiq M; Macías-Díaz JE; Raza A; Ahmed N Appl Math Model; 2021 Jan; 89():1835-1846. PubMed ID: 32982020 [TBL] [Abstract][Full Text] [Related]
20. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Huang G; Takeuchi Y; Ma W; Wei D Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]