These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36561682)

  • 21. Performance Enhancement of an MoS
    Ali MH; Al Mamun MA; Haque MD; Rahman MF; Hossain MK; Md Touhidul Islam AZ
    ACS Omega; 2023 Feb; 8(7):7017-7029. PubMed ID: 36844558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing Crystal Orientation and Defect Mitigation in Antimony Selenide Thin-Film Solar Cells through Buffer Layer Energy Band Adjustment.
    Yang Y; Zhang T; Zhu H; Geng K; Huang S; Shen B; Dong B; Zhang S; Gu D; Jiang S; Yan Y; Guo H; Qiu J; Li L; Yuan N; Ding J
    Small; 2024 Jul; ():e2403292. PubMed ID: 38958094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell.
    Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Cu-Doping for Performance Improvement in Sb
    Spaggiari G; Bersani D; Calestani D; Gilioli E; Gombia E; Mezzadri F; Casappa M; Pattini F; Trevisi G; Rampino S
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive rear surface passivation of superstrate Sb
    Jeong G; Ji S; Choi J; Jung J; Shin B
    Faraday Discuss; 2022 Oct; 239(0):263-272. PubMed ID: 35916303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study of copper antimony sulphide (CuSbS
    Obare N; Isoe W; Nalianya A; Mageto M; Odari V
    Heliyon; 2024 Mar; 10(5):e26896. PubMed ID: 38455588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale Chemical Analysis of Thin Film Solar Cell Interfaces Using Tip-Enhanced Raman Spectroscopy.
    Bienz S; Spaggiari G; Calestani D; Trevisi G; Bersani D; Zenobi R; Kumar N
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14704-14711. PubMed ID: 38494603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Oxygen Exposure Improves the Back Contact and Performance of Antimony Selenide Solar Cells.
    Fleck N; Hutter OS; Phillips LJ; Shiel H; Hobson TDC; Dhanak VR; Veal TD; Jäckel F; Durose K; Major JD
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52595-52602. PubMed ID: 33170631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the potential of standalone and tandem solar cells with Sb
    Dahmardeh Z; Saadat M
    Sci Rep; 2023 Dec; 13(1):22632. PubMed ID: 38114523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Performance of Thermally Evaporated Sb
    Yao S; Wang J; Cheng J; Fu L; Xie F; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2020 May; 12(21):24112-24124. PubMed ID: 32357294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimony Selenide Solar Cells Fabricated by Hybrid Reactive Magnetron Sputtering.
    Brito D; Anacleto P; Pérez-Rodríguez A; Fonseca J; Santos P; Alves M; Cavalli A; Sharma D; Claro MS; Nicoara N; Sadewasser S
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient and Stable Planar n-i-p Sb
    Shen K; Zhang Y; Wang X; Ou C; Guo F; Zhu H; Liu C; Gao Y; Schropp REI; Li Z; Liu X; Mai Y
    Adv Sci (Weinh); 2020 Aug; 7(16):2001013. PubMed ID: 32832357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-Step Hydrothermal Synthesis of Sn-Doped Sb
    Wang Z; Bae S; Baljozović M; Adams P; Yong D; Service E; Moehl T; Niu W; Tilley SD
    ACS Catal; 2024 Jul; 14(13):9877-9886. PubMed ID: 38988656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCAPS-1D Modeling of Hydrogenated Lead-Free Cs
    Sabbah H; Abdel Baki Z; Mezher R; Arayro J
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active Passivation of Anion Vacancies in Antimony Selenide Film for Efficient Solar Cells.
    Cai Z; Che B; Gu Y; Xiao P; Wu L; Liang W; Zhu C; Chen T
    Adv Mater; 2024 Jul; 36(30):e2404826. PubMed ID: 38743030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure, Morphology, and Photoelectric Performances of Te-Sb
    Ren D; Luo X; Chen S; Zheng Z; Cathelinaud M; Liang G; Ma H; Qiao X; Fan X; Zhang X
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal Growth Promotion and Defects Healing Enable Minimum Open-Circuit Voltage Deficit in Antimony Selenide Solar Cells.
    Liang G; Chen M; Ishaq M; Li X; Tang R; Zheng Z; Su Z; Fan P; Zhang X; Chen S
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105142. PubMed ID: 35088583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells.
    Li Z; Liang X; Li G; Liu H; Zhang H; Guo J; Chen J; Shen K; San X; Yu W; Schropp REI; Mai Y
    Nat Commun; 2019 Jan; 10(1):125. PubMed ID: 30631064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conduction Band Energy-Level Engineering for Improving Open-Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells.
    Liu T; Liang X; Liu Y; Li X; Wang S; Mai Y; Li Z
    Adv Sci (Weinh); 2021 Aug; 8(16):e2100868. PubMed ID: 34114348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer.
    Tiwari P; Alotaibi MF; Al-Hadeethi Y; Srivastava V; Arkook B; Sadanand ; Lohia P; Dwivedi DK; Umar A; Algadi H; Baskoutas S
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.