BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36561929)

  • 1. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis.
    DiNatale A; Worrede A; Iqbal W; Marchioli M; Toth A; Sjöström M; Zhu X; Corey E; Feng FY; Zhou W; Fatatis A
    Cancer Res Commun; 2022 Dec; 2(12):1545-1557. PubMed ID: 36561929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer.
    Ylitalo EB; Thysell E; Landfors M; Brattsand M; Jernberg E; Crnalic S; Widmark A; Hultdin M; Bergh A; Degerman S; Wikström P
    Clin Epigenetics; 2021 Jun; 13(1):133. PubMed ID: 34193246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche.
    Shahriari K; Shen F; Worrede-Mahdi A; Liu Q; Gong Y; Garcia FU; Fatatis A
    Oncogene; 2017 May; 36(20):2846-2856. PubMed ID: 27991924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-1β induces p62/SQSTM1 and represses androgen receptor expression in prostate cancer cells.
    Chang MA; Patel V; Gwede M; Morgado M; Tomasevich K; Fong EL; Farach-Carson MC; Delk NA
    J Cell Biochem; 2014 Dec; 115(12):2188-97. PubMed ID: 25103771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation of the androgen signaling pathway by the Wilms' tumor suppressor gene WT1.
    Zaia A; Fraizer GC; Piantanelli L; Saunders GF
    Anticancer Res; 2001; 21(1A):1-10. PubMed ID: 11299720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen.
    Weber H; Ruoff R; Garabedian MJ
    PLoS Genet; 2021 Jan; 17(1):e1008540. PubMed ID: 33513133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an IL-1-induced gene expression pattern in AR
    Thomas-Jardin SE; Kanchwala MS; Jacob J; Merchant S; Meade RK; Gahnim NM; Nawas AF; Xing C; Delk NA
    Prostate; 2018 Jun; 78(8):595-606. PubMed ID: 29527701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Cell Activity in Clinical Prostate Cancer Bone Metastasis and Its Inverse Relation to Tumor Cell Androgen Receptor Activity.
    Nordstrand A; Bovinder Ylitalo E; Thysell E; Jernberg E; Crnalic S; Widmark A; Bergh A; Lerner UH; Wikström P
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer.
    Efstathiou E; Titus M; Wen S; Hoang A; Karlou M; Ashe R; Tu SM; Aparicio A; Troncoso P; Mohler J; Logothetis CJ
    Eur Urol; 2015 Jan; 67(1):53-60. PubMed ID: 24882673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model.
    Thomas-Jardin SE; Dahl H; Kanchwala MS; Ha F; Jacob J; Soundharrajan R; Bautista M; Nawas AF; Robichaux D; Mistry R; Anunobi V; Xing C; Delk NA
    Prostate; 2020 Feb; 80(2):133-145. PubMed ID: 31730277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional Repression of SIRT3 Potentiates Mitochondrial Aconitase Activation to Drive Aggressive Prostate Cancer to the Bone.
    Sawant Dessai A; Dominguez MP; Chen UI; Hasper J; Prechtl C; Yu C; Katsuta E; Dai T; Zhu B; Jung SY; Putluri N; Takabe K; Zhang XH; O'Malley BW; Dasgupta S
    Cancer Res; 2021 Jan; 81(1):50-63. PubMed ID: 33115805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles.
    Hoang DT; Iczkowski KA; Kilari D; See W; Nevalainen MT
    Oncotarget; 2017 Jan; 8(2):3724-3745. PubMed ID: 27741508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.
    Kregel S; Kiriluk KJ; Rosen AM; Cai Y; Reyes EE; Otto KB; Tom W; Paner GP; Szmulewitz RZ; Vander Griend DJ
    PLoS One; 2013; 8(1):e53701. PubMed ID: 23326489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testosterone boosts for treatment of castration resistant prostate cancer: an experimental implementation of intermittent androgen deprivation.
    Thelen P; Heinrich E; Bremmer F; Trojan L; Strauss A
    Prostate; 2013 Nov; 73(15):1699-709. PubMed ID: 23868789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer.
    Siu MK; Chen WY; Tsai HY; Chen HY; Yin JJ; Chen CL; Tsai YC; Liu YN
    Prostate Cancer Prostatic Dis; 2017 Jun; 20(2):172-178. PubMed ID: 28220803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer.
    Wang D; Cheng C; Chen X; Wang J; Liu K; Jing N; Xu P; Xi X; Sun Y; Ji Z; Zhao H; He Y; Zhang K; Du X; Dong B; Fang Y; Zhang P; Qian X; Xue W; Gao WQ; Zhu HH
    Adv Sci (Weinh); 2023 Jun; 10(17):e2206889. PubMed ID: 37092583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting androgen receptor (AR), AR variant 7 (AR-V7), prostate-specific membrane antigen (PSMA), and prostate-specific antigen (PSA) gene expression in CTCs and plasma exosome-derived cfRNA in patients with metastatic castration-resistant prostate cancer (mCRPC) by integrating the VTX-1 CTC isolation system with the QIAGEN AdnaTest.
    Liu HE; Vuppalapaty M; Hoerner CR; Bergstrom CP; Chiu M; Lemaire C; Che J; Kaur A; Dimmick A; Liu S; Metzner TJ; Araya M; Crouse S; Sprenger-Haussels M; Schlumpberger M; Leppert JT; Hauch S; Sollier E; Fan AC
    BMC Cancer; 2024 Apr; 24(1):482. PubMed ID: 38627648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic IL-1 exposure drives LNCaP cells to evolve androgen and AR independence.
    Dahl HC; Kanchwala M; Thomas-Jardin SE; Sandhu A; Kanumuri P; Nawas AF; Xing C; Lin C; Frigo DE; Delk NA
    PLoS One; 2020; 15(12):e0242970. PubMed ID: 33326447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective androgen receptor modulators activate the canonical prostate cancer androgen receptor program and repress cancer growth.
    Nyquist MD; Ang LS; Corella A; Coleman IM; Meers MP; Christiani AJ; Pierce C; Janssens DH; Meade HE; Bose A; Brady L; Howard T; De Sarkar N; Frank SB; Dumpit RF; Dalton JT; Corey E; Plymate SR; Haffner MC; Mostaghel EA; Nelson PS
    J Clin Invest; 2021 May; 131(10):. PubMed ID: 33998604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells.
    Levina E; Ji H; Chen M; Baig M; Oliver D; Ohouo P; Lim CU; Schools G; Carmack S; Ding Y; Broude EV; Roninson IB; Buttyan R; Shtutman M
    Oncotarget; 2015 May; 6(15):13088-104. PubMed ID: 26036626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.