These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36562309)

  • 1. Uncovering water effects in protein-ligand recognition: importance in the second hydration shell and binding kinetics.
    Chen W; He H; Wang J; Wang J; Chang CA
    Phys Chem Chem Phys; 2023 Jan; 25(3):2098-2109. PubMed ID: 36562309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding.
    Shi J; Cho JH; Hwang W
    J Chem Theory Comput; 2023 Mar; 19(6):1875-1887. PubMed ID: 36820489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Including explicit water molecules as part of the protein structure in MM/PBSA calculations.
    Zhu YL; Beroza P; Artis DR
    J Chem Inf Model; 2014 Feb; 54(2):462-9. PubMed ID: 24432790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute Binding Free Energy Calculations for Buried Water Molecules.
    Ge Y; Baumann HM; Mobley DL
    J Chem Theory Comput; 2022 Nov; 18(11):6482-6499. PubMed ID: 36197451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding.
    Abel R; Young T; Farid R; Berne BJ; Friesner RA
    J Am Chem Soc; 2008 Mar; 130(9):2817-31. PubMed ID: 18266362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Factor Xa Protein-Ligand Interactions: Accurate Free Energy Calculations and Experimental Validations of Two Series of High-Affinity Ligands.
    Fernández-Bachiller MI; Hwang S; Schembri ME; Lindemann P; Guberman M; Herziger S; Specker E; Matter H; Will DW; Czech J; Wagner M; Bauer A; Schreuder H; Ritter K; Urmann M; Wehner V; Sun H; Nazaré M
    J Med Chem; 2022 Oct; 65(19):13013-13028. PubMed ID: 36178213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics.
    Huang YM; Kang M; Chang CE
    J Mol Recognit; 2014 Sep; 27(9):537-48. PubMed ID: 25042708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Protein-Ligand Electrostatic Interactions Using an Alchemical Free-Energy Method.
    Wade AD; Huggins DJ
    J Chem Theory Comput; 2019 Nov; 15(11):6504-6512. PubMed ID: 31584802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics.
    Jiang W
    J Chem Theory Comput; 2024 Apr; 20(8):3085-3095. PubMed ID: 38568961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HydraMap v.2: Prediction of Hydration Sites and Desolvation Energy with Refined Statistical Potentials.
    Li Y; Zhang Z; Wang R
    J Chem Inf Model; 2023 Aug; 63(15):4749-4761. PubMed ID: 37433022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water access and ligand dissociation at the binding site of proteins.
    Yonetani Y
    J Chem Phys; 2018 Nov; 149(17):175102. PubMed ID: 30408972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.