These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36562317)

  • 1. Machine learning in computational chemistry: interplay between (non)linearity, basis sets, and dimensionality.
    Manzhos S; Tsuda S; Ihara M
    Phys Chem Chem Phys; 2023 Jan; 25(3):1546-1555. PubMed ID: 36562317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian processes for machine learning.
    Seeger M
    Int J Neural Syst; 2004 Apr; 14(2):69-106. PubMed ID: 15112367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The loss of the property of locality of the kernel in high-dimensional Gaussian process regression on the example of the fitting of molecular potential energy surfaces.
    Manzhos S; Ihara M
    J Chem Phys; 2023 Jan; 158(4):044111. PubMed ID: 36725493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Network with Optimal Neuron Activation Functions Based on Additive Gaussian Process Regression.
    Manzhos S; Ihara M
    J Phys Chem A; 2023 Sep; 127(37):7823-7835. PubMed ID: 37698519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to Make Chemical Predictions: the Interplay of Feature Representation, Data, and Machine Learning Methods.
    Haghighatlari M; Li J; Heidar-Zadeh F; Liu Y; Guan X; Head-Gordon T
    Chem; 2020 Jul; 6(7):1527-1542. PubMed ID: 32695924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.
    Gorban AN; Mirkes EM; Zinovyev A
    Neural Netw; 2016 Dec; 84():28-38. PubMed ID: 27639721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension.
    Manzhos S; Ihara M
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38189605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene shaving using a sensitivity analysis of kernel based machine learning approach, with applications to cancer data.
    Alam MA; Shahjaman M; Rahman MF; Hossain F; Deng HW
    PLoS One; 2019; 14(5):e0217027. PubMed ID: 31120939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to Approximate Density Functionals.
    Kalita B; Li L; McCarty RJ; Burke K
    Acc Chem Res; 2021 Feb; 54(4):818-826. PubMed ID: 33534553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning for accuracy in density functional approximations.
    Voss J
    J Comput Chem; 2024 Aug; 45(21):1829-1845. PubMed ID: 38668453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of atomization energy using graph kernel and active learning.
    Tang YH; de Jong WA
    J Chem Phys; 2019 Jan; 150(4):044107. PubMed ID: 30709286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Kernel Machines Using Deep Learning.
    Song H; J Thiagarajan J; Sattigeri P; Spanias A
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5528-5540. PubMed ID: 29993616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical actinide molecular science.
    Schreckenbach G; Shamov GA
    Acc Chem Res; 2010 Jan; 43(1):19-29. PubMed ID: 19719099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.