These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36562511)
1. Electrohydrodynamic printing of submicron-microscale hybrid scaffolds with improved cellular adhesion and proliferation behaviors. Zhang B; Li S; He J; Lei Q; Wu C; Song A; Zhang C Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562511 [TBL] [Abstract][Full Text] [Related]
2. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. Lei Q; He J; Li D Nanoscale; 2019 Aug; 11(32):15195-15205. PubMed ID: 31380883 [TBL] [Abstract][Full Text] [Related]
3. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes. He J; Xu F; Dong R; Guo B; Li D Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044 [TBL] [Abstract][Full Text] [Related]
4. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds. He J; Xia P; Li D Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377 [TBL] [Abstract][Full Text] [Related]
5. Electrohydrodynamic Printing of Microscale Fibrous Scaffolds with a Sinusoidal Structure for Enhancing the Contractility of Cardiomyocytes. Lei Q; Jia J; Guan X; Han K; Liu J; Duan R; Lian X; Huang D ACS Biomater Sci Eng; 2024 Nov; 10(11):7227-7234. PubMed ID: 39390708 [TBL] [Abstract][Full Text] [Related]
6. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration. Ahn SH; Lee HJ; Kim GH Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Attachment and Collagen Type I Deposition of MC3T3-E1 Cells via Electrohydrodynamic Printed Sub-Microscale Fibrous Architectures. Hu S; Meng Z; Zhou J; Li Y; Su Y; Lei Q; Mao M; Qu X; He J; Wang W Int J Bioprint; 2022; 8(2):514. PubMed ID: 35669332 [TBL] [Abstract][Full Text] [Related]
8. A hybrid PCL/collagen scaffold consisting of solid freeform-fabricated struts and EHD-direct-jet-processed fibrous threads for tissue regeneration. Yang GH; Kim M; Kim G J Colloid Interface Sci; 2015 Jul; 450():159-167. PubMed ID: 25818355 [TBL] [Abstract][Full Text] [Related]
9. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. Li K; Wang D; Zhao K; Song K; Liang J Talanta; 2020 May; 211():120750. PubMed ID: 32070610 [TBL] [Abstract][Full Text] [Related]
10. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124 [TBL] [Abstract][Full Text] [Related]
12. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Freeman FE; Browe DC; Nulty J; Von Euw S; Grayson WL; Kelly DJ Eur Cell Mater; 2019 Oct; 38():168-187. PubMed ID: 31602629 [TBL] [Abstract][Full Text] [Related]
14. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261 [TBL] [Abstract][Full Text] [Related]
15. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
17. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. Liu H; Vijayavenkataraman S; Wang D; Jing L; Sun J; He K Int J Bioprint; 2017; 3(1):009. PubMed ID: 33094184 [TBL] [Abstract][Full Text] [Related]
18. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. He J; Zhang B; Li Z; Mao M; Li J; Han K; Li D Biofabrication; 2020 Jul; 12(4):042002. PubMed ID: 32615543 [TBL] [Abstract][Full Text] [Related]
19. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
20. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. Gao Q; Xie C; Wang P; Xie M; Li H; Sun A; Fu J; He Y Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110269. PubMed ID: 31761213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]