These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36562511)
21. High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration. Liu Z; Wang H; Yuan Z; Wei Q; Han F; Chen S; Xu H; Li J; Wang J; Li Z; Chen Q; Fuh J; Ding L; Wang H; Li B Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36541475 [TBL] [Abstract][Full Text] [Related]
22. Electrohydrodynamic 3D Printing Scaffolds for Repair of Achilles Tendon Defect in Rats. Zhang H; Pei Z; Wang C; Li M; Zhang H; Qu J Tissue Eng Part A; 2021 Oct; 27(19-20):1343-1354. PubMed ID: 33573468 [TBL] [Abstract][Full Text] [Related]
23. In-Situ Assembly of MoS Zhang B; Li S; Qureshi MSH; Mia U; Ge Z; Song A Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501643 [TBL] [Abstract][Full Text] [Related]
24. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Yeo M; Kim G Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026 [TBL] [Abstract][Full Text] [Related]
25. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655 [TBL] [Abstract][Full Text] [Related]
26. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941 [TBL] [Abstract][Full Text] [Related]
27. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
28. Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Fonseca DR; Sobreiro-Almeida R; Sol PC; Neves NM Biomater Sci; 2018 May; 6(6):1569-1579. PubMed ID: 29708246 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
30. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
31. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. Chen M; Feng Z; Guo W; Yang D; Gao S; Li Y; Shen S; Yuan Z; Huang B; Zhang Y; Wang M; Li X; Hao L; Peng J; Liu S; Zhou Y; Guo Q ACS Appl Mater Interfaces; 2019 Nov; 11(44):41626-41639. PubMed ID: 31596568 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Kim MS; Kim G Carbohydr Polym; 2014 Dec; 114():213-221. PubMed ID: 25263884 [TBL] [Abstract][Full Text] [Related]
33. [Study on the preparation of polycaprolactone/type Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332 [TBL] [Abstract][Full Text] [Related]
35. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Prasopthum A; Shakesheff KM; Yang J Biofabrication; 2018 Jan; 10(2):025002. PubMed ID: 29235445 [TBL] [Abstract][Full Text] [Related]
36. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
37. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
38. 3D-Printed Prolamin Scaffolds for Cell-Based Meat Culture. Su L; Jing L; Zeng X; Chen T; Liu H; Kong Y; Wang X; Yang X; Fu C; Sun J; Huang D Adv Mater; 2023 Jan; 35(2):e2207397. PubMed ID: 36271729 [TBL] [Abstract][Full Text] [Related]
39. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Pedram Rad Z; Mokhtari J; Abbasi M Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839 [TBL] [Abstract][Full Text] [Related]
40. Multiscale Hierarchical Architecture-Based Bioactive Scaffolds for Versatile Tissue Engineering. Ma H; Yang C; Ma Z; Wei X; Younis MR; Wang H; Li W; Wang Z; Wang W; Luo Y; Huang P; Wang J Adv Healthc Mater; 2022 Jul; 11(13):e2102837. PubMed ID: 35355444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]