BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36562519)

  • 1. Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy.
    Nam K; Kim H; Park W; Ahn JS; Choi S
    Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon coupled nano-probe for near field scanning optical microscopy.
    Yin X; Shi P; Yang A; Du L; Yuan X
    Opt Express; 2020 May; 28(10):14831-14838. PubMed ID: 32403517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio.
    Jiang RH; Chen C; Lin DZ; Chou HC; Chu JY; Yen TJ
    Nano Lett; 2018 Feb; 18(2):881-885. PubMed ID: 29281295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Temperature-Induced Plasmonic Nonlinearity: Unveiling Opto-Thermal Effects on Light Absorption and Near-Field Enhancement.
    Lee H; Im S; Lee C; Lee H; Chu SW; Ho AH; Kim D
    Nano Lett; 2024 Mar; 24(12):3598-3605. PubMed ID: 38407029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal radiation scanning tunnelling microscopy.
    De Wilde Y; Formanek F; Carminati R; Gralak B; Lemoine PA; Joulain K; Mulet JP; Chen Y; Greffet JJ
    Nature; 2006 Dec; 444(7120):740-3. PubMed ID: 17151664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Mapping of Unmodulated Temperature Fields with Nanometer Resolution.
    Reihani A; Luan Y; Yan S; Lim JW; Meyhofer E; Reddy P
    ACS Nano; 2022 Jan; 16(1):939-950. PubMed ID: 34958551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing.
    Zhang M; Wang T
    Nanoscale Res Lett; 2016 Dec; 11(1):421. PubMed ID: 27654281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.
    Hwang G; Kwon O
    Nanoscale; 2016 Mar; 8(9):5280-90. PubMed ID: 26880606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy.
    Umakoshi T; Saito Y; Verma P
    Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material.
    Zhou J; Barnard E; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Opt Express; 2023 Jun; 31(12):20440-20448. PubMed ID: 37381438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.