These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36562630)

  • 1. Physiological stage drives fungal community dynamics and diversity in Leptospermum scoparium (mānuka) flowers.
    Larrouy JL; Dhami MK; Jones EE; Ridgway HJ
    Environ Microbiol; 2023 Mar; 25(3):766-771. PubMed ID: 36562630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of mānuka (Leptospermum scoparium).
    Clearwater MJ; Revell M; Noe S; Manley-Harris M
    Ann Bot; 2018 Mar; 121(3):501-512. PubMed ID: 29300875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nectary photosynthesis contributes to the production of mānuka (Leptospermum scoparium) floral nectar.
    Clearwater MJ; Noe ST; Manley-Harris M; Truman GL; Gardyne S; Murray J; Obeng-Darko SA; Richardson SJ
    New Phytol; 2021 Nov; 232(4):1703-1717. PubMed ID: 34287899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional, annual, and individual variations in the dihydroxyacetone content of the nectar of ma̅nuka (Leptospermum scoparium) in New Zealand.
    Williams S; King J; Revell M; Manley-Harris M; Balks M; Janusch F; Kiefer M; Clearwater M; Brooks P; Dawson M
    J Agric Food Chem; 2014 Oct; 62(42):10332-40. PubMed ID: 25277074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of maltol glucoside from the floral nectar of New Zealand mānuka (Leptospermum scoparium).
    Adams CJ; Grainger MN; Manley-Harris M
    Food Chem; 2015 May; 174():306-9. PubMed ID: 25529685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of yeasts in floral nectar is consistent with the hypothesis of microbial-mediated signaling in plant-pollinator interactions.
    Pozo MI; de Vega C; Canto A; Herrera CM
    Plant Signal Behav; 2009 Nov; 4(11):1102-4. PubMed ID: 20009562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar and dihydroxyacetone ratios in floral nectar suggest continuous exudation and reabsorption in Leptospermum polygalifolium Salisb.
    Obeng-Darko SA; Brooks PR; Veneklaas EJ; Finnegan PM
    Plant Sci; 2022 Oct; 323():111378. PubMed ID: 35842059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands.
    Mittelbach M; Yurkov AM; Nocentini D; Nepi M; Weigend M; Begerow D
    BMC Ecol; 2015 Feb; 15(1):2. PubMed ID: 25638173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nectar compounds impact bacterial and fungal growth and shift community dynamics in a nectar analog.
    Mueller TG; Francis JS; Vannette RL
    Environ Microbiol Rep; 2023 Jun; 15(3):170-180. PubMed ID: 36779256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community.
    Canto A; Herrera CM
    Ann Bot; 2012 Nov; 110(6):1173-83. PubMed ID: 22915578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey.
    Bong J; Middleditch M; Loomes KM; Stephens JM
    Food Chem; 2021 Jul; 350():128442. PubMed ID: 33388180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culturable bacteria are more common than fungi in floral nectar and are more easily dispersed by thrips, a ubiquitous flower visitor.
    Vannette RL; McMunn MS; Hall GW; Mueller TG; Munkres I; Perry D
    FEMS Microbiol Ecol; 2021 Dec; 97(12):. PubMed ID: 34791198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Community-wide consequences of sexual dimorphism: evidence from nectar microbes in dioecious plants.
    Tsuji K; Fukami T
    Ecology; 2018 Nov; 99(11):2476-2484. PubMed ID: 30216955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub.
    Belisle M; Peay KG; Fukami T
    Microb Ecol; 2012 May; 63(4):711-8. PubMed ID: 22080257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersal enhances beta diversity in nectar microbes.
    Vannette RL; Fukami T
    Ecol Lett; 2017 Jul; 20(7):901-910. PubMed ID: 28597955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial abundance, composition, and function in nectar are shaped by flower visitor identity.
    Morris MM; Frixione NJ; Burkert AC; Dinsdale EA; Vannette RL
    FEMS Microbiol Ecol; 2020 Mar; 96(3):. PubMed ID: 31922546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of nectar yeasts on the reproduction of Mediterranean plant species.
    de Vega C; Albaladejo RG; Álvarez-Pérez S; Herrera CM
    Am J Bot; 2022 Mar; 109(3):393-405. PubMed ID: 35315515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast-nectar interactions: metacommunities and effects on pollinators.
    Jacquemyn H; Pozo MI; Álvarez-Pérez S; Lievens B; Fukami T
    Curr Opin Insect Sci; 2021 Apr; 44():35-40. PubMed ID: 33065340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (Mimulus guttatus) floral microbiome.
    Rebolleda Gómez M; Ashman TL
    Mol Ecol; 2019 Dec; 28(23):5155-5171. PubMed ID: 31631452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.
    Samuni-Blank M; Izhaki I; Laviad S; Bar-Massada A; Gerchman Y; Halpern M
    PLoS One; 2014; 9(6):e99107. PubMed ID: 24922317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.