BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36562884)

  • 1. Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders.
    Kaur P; Khera A; Alajangi HK; Sharma A; Jaiswal PK; Singh G; Barnwal RP
    Mol Neurobiol; 2023 Mar; 60(3):1690-1720. PubMed ID: 36562884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies.
    Šimić G; Babić Leko M; Wray S; Harrington C; Delalle I; Jovanov-Milošević N; Bažadona D; Buée L; de Silva R; Di Giovanni G; Wischik C; Hof PR
    Biomolecules; 2016 Jan; 6(1):6. PubMed ID: 26751493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models.
    Zhang X; Hernandez I; Rei D; Mair W; Laha JK; Cornwell ME; Cuny GD; Tsai LH; Steen JA; Kosik KS
    J Biol Chem; 2013 Jul; 288(30):22042-56. PubMed ID: 23737518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer's disease and related tauopathies.
    Su J; Xiao Y; Wei L; Lei H; Sun F; Wang W; Yin J; Xiong R; Li S; Zhang P; Zhou Y; Wang X; Zheng J; Wang JZ
    Sci Bull (Beijing); 2024 Apr; 69(8):1137-1152. PubMed ID: 38341350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Selection of Tau Oligomerization-Inhibiting Aptamers.
    Wang B; Pan X; Teng IT; Li X; Kobeissy F; Wu ZY; Zhu J; Cai G; Yan H; Yan X; Liang M; Yu F; Lu J; Yang Z; Biondi E; Haskins W; Cao YC; Benner SA; Tan W; Wang KK
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202402007. PubMed ID: 38407551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tauopathies.
    Hernández F; Avila J
    Cell Mol Life Sci; 2007 Sep; 64(17):2219-33. PubMed ID: 17604998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration.
    Li W; Li JY
    Transl Neurodegener; 2024 Mar; 13(1):16. PubMed ID: 38528629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease.
    Guha S; Johnson GVW; Nehrke K
    Mol Neurobiol; 2020 Dec; 57(12):5103-5120. PubMed ID: 32851560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling tau: One protein, many therapeutic approaches.
    Lane-Donovan C; Boxer AL
    Neurotherapeutics; 2024 Mar; 21(2):e00321. PubMed ID: 38278659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of Tau Protein by CDK2/cyclin A and GSK3β Recombinant Kinases: Analysis of Phosphorylation Patterns by Nuclear Magnetic Resonance Spectroscopy.
    El Hajjar L; Bridot C; Nguyen M; Cantrelle FX; Landrieu I; Smet-Nocca C
    Methods Mol Biol; 2024; 2754():271-306. PubMed ID: 38512672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin nanocage-enabled detection of pathological tau in living human retinal cells.
    Barolo L; Gigante Y; Mautone L; Ghirga S; Soloperto A; Giorgi A; Ghirga F; Pitea M; Incocciati A; Mura F; Ruocco G; Boffi A; Baiocco P; Di Angelantonio S
    Sci Rep; 2024 May; 14(1):11533. PubMed ID: 38773170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA and protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies.
    Gallo JM; Noble W; Martin TR
    Cell Mol Life Sci; 2007 Jul; 64(13):1701-14. PubMed ID: 17453144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants for activation of the Tau kinase CDK5 by the serotonin receptor 5-HT7R.
    Ackmann J; Brüge A; Gotina L; Lim S; Jahreis K; Vollbrecht AL; Kim YK; Pae AN; Labus J; Ponimaskin E
    Cell Commun Signal; 2024 Apr; 22(1):233. PubMed ID: 38641599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Methylation and Phosphorylation Stoichiometry.
    Ayoub CA; Moore KI; Kuret J
    Methods Mol Biol; 2024; 2754():221-235. PubMed ID: 38512670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assays for the Screening and Characterization of Tau Aggregation Inhibitors.
    Horsley D; Rickard JE; Vorley T; Leeper MF; Wischik CM; Harrington CR
    Methods Mol Biol; 2024; 2754():93-104. PubMed ID: 38512662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies.
    Ballatore C; Brunden KR; Trojanowski JQ; Lee VM; Smith AB; Huryn DM
    Curr Top Med Chem; 2011; 11(3):317-30. PubMed ID: 21320060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of tau by peptidyl-prolyl isomerases.
    Zhuang S; Chakraborty P; Zweckstetter M
    Curr Opin Struct Biol; 2024 Feb; 84():102739. PubMed ID: 38061261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionarily conserved regulators of tau identify targets for new therapies.
    Kim J; de Haro M; Al-Ramahi I; Garaicoechea LL; Jeong HH; Sonn JY; Tadros B; Liu Z; Botas J; Zoghbi HY
    Neuron; 2023 Mar; 111(6):824-838.e7. PubMed ID: 36610398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing pharmacological therapies for Alzheimer disease.
    Iqbal K; Grundke-Iqbal I
    Cell Mol Life Sci; 2007 Sep; 64(17):2234-44. PubMed ID: 17604997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparan Sulfate as a Therapeutic Target in Tauopathies: Insights From Zebrafish.
    Alavi Naini SM; Soussi-Yanicostas N
    Front Cell Dev Biol; 2018; 6():163. PubMed ID: 30619849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.