These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36562989)

  • 1. Role of Seawater Ions in Forming an Effective Interface between Photocatalyst/Cocatalyst.
    Mann R; Khushalani D
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1219-1226. PubMed ID: 36562989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic Hydrogen Evolution from Artificial Seawater Splitting over Amorphous Carbon Nitride: Optimization and Process Parameters Study via Response Surface Modeling.
    Chee MKT; Ng BJ; Chew YH; Chang WS; Chai SP
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically Porous Few-Layer Carbon Nitride and Its High H
    Xiao ST; Yin R; Wu L; Wu SM; Tian G; Shalom M; Wang LY; Wang YT; Pu FF; Barad HN; Wang F; Yang XY
    Nano Lett; 2023 May; 23(10):4390-4398. PubMed ID: 37154763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nitride Loaded with an Ultrafine, Monodisperse, Metallic Platinum-Cluster Cocatalyst for the Photocatalytic Hydrogen-Evolution Reaction.
    Yazaki D; Kawawaki T; Hirayama D; Kawachi M; Kato K; Oguchi S; Yamaguchi Y; Kikkawa S; Ueki Y; Hossain S; Osborn DJ; Ozaki F; Tanaka S; Yoshinobu J; Metha GF; Yamazoe S; Kudo A; Yamakata A; Negishi Y
    Small; 2023 Aug; 19(34):e2208287. PubMed ID: 37093189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Degenerate Semiconductor Photocatalysis for Efficient Water Splitting without Sacrificial Agents via a Reticular Chemistry Approach.
    Shiuan Ng L; Raja Mogan T; Lee JK; Li H; Ken Lee CL; Kwee Lee H
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202313695. PubMed ID: 37830489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765 nm.
    Wang YL; Nie T; Li YH; Wang XL; Zheng LR; Chen AP; Gong XQ; Yang HG
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7430-7434. PubMed ID: 28544453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum Cocatalyst Loaded on Calcium Titanate Photocatalyst for Water Splitting in a Flow of Water Vapor.
    Yoshida H; Yamada R; Yoshida T
    ChemSusChem; 2019 May; 12(9):1958-1965. PubMed ID: 30803147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Cyanamide Functionalization and Charge-Induced Activation of Nickel/Carbon Nitride for Enhanced Selective Photoreforming of Ethanol.
    Gunawan D; Toe CY; Kumar P; Scott J; Amal R
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49916-49926. PubMed ID: 34652901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface engineering of a CoO(x)/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation.
    Chen S; Shen S; Liu G; Qi Y; Zhang F; Li C
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3047-51. PubMed ID: 25611198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni
    Liu Y; Xiang Z
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41313-41320. PubMed ID: 31613082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation.
    Zhang D; He W; Ye J; Gao X; Wang D; Song J
    Small; 2021 Apr; 17(13):e2005149. PubMed ID: 33690963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production.
    Jiang D; Irfan RM; Sun Z; Lu D; Du P
    ChemSusChem; 2016 Nov; 9(21):3084-3092. PubMed ID: 27730758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts.
    Kawawaki T; Kawachi M; Yazaki D; Akinaga Y; Hirayama D; Negishi Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor.
    You P; Lian C; Chen D; Xu J; Zhang C; Meng S; Wang E
    Nano Lett; 2021 Aug; 21(15):6449-6455. PubMed ID: 34279962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting.
    Zhu M; Han M; Zhu C; Hu L; Huang H; Liu Y; Kang Z
    J Colloid Interface Sci; 2018 Nov; 530():256-263. PubMed ID: 29982017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overall Water Splitting on the Transition-Metal Oxynitride Photocatalyst LaMg1/3Ta2/3O2N over a Large Portion of the Visible-Light Spectrum.
    Pan C; Takata T; Domen K
    Chemistry; 2016 Jan; 22(5):1854-62. PubMed ID: 26680470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali Halide Boost of Carbon Nitride for Photocatalytic H
    Xu W; Zhao X; An X; Wang S; Zhang J; Li Z; Wu W; Wu M
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48526-48532. PubMed ID: 33047949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-Efficient Graphitic Carbon Nitride as an Effective Photocatalyst for Antibiotic Degradation: An Insight into the Effects of Different Precursors and Coexisting Ions, and Photocatalytic Mechanism.
    Tian C; Zhao H; Mei J; Yang S
    Chem Asian J; 2019 Jan; 14(1):162-169. PubMed ID: 30408336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.