These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36563021)

  • 21. DNA Methylation-a Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy.
    Mishra M; Kowluru RA
    Mol Neurobiol; 2019 Jan; 56(1):88-101. PubMed ID: 29679259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aberrant shuttling of long noncoding RNAs during the mitochondria-nuclear crosstalk in hepatocellular carcinoma cells.
    Zhao Y; Liu S; Zhou L; Li X; Meng Y; Li Y; Li L; Jiao B; Bai L; Yu Y; Zhang S; Li W; Hoffman AR; Hu JF; Cui J
    Am J Cancer Res; 2019; 9(5):999-1008. PubMed ID: 31218107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long Noncoding RNAs and Mitochondrial Homeostasis in the Development of Diabetic Retinopathy.
    Kowluru RA
    Front Endocrinol (Lausanne); 2022; 13():915031. PubMed ID: 35733767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression.
    Madsen-Bouterse SA; Mohammad G; Kanwar M; Kowluru RA
    Antioxid Redox Signal; 2010 Sep; 13(6):797-805. PubMed ID: 20088705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homocysteine and mitochondrial quality control in diabetic retinopathy.
    Malaviya P; Kowluru RA
    Eye Vis (Lond); 2024 Jan; 11(1):5. PubMed ID: 38229140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome analysis identified a novel 3-LncRNA regulatory network of transthyretin attenuating glucose induced hRECs dysfunction in diabetic retinopathy.
    Shao J; Zhang Y; Fan G; Xin Y; Yao Y
    BMC Med Genomics; 2019 Oct; 12(1):134. PubMed ID: 31615521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy.
    Mohammad G; Kowluru RA
    J Diabetes Res; 2022; 2022():3555889. PubMed ID: 35399705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial Fragmentation in a High Homocysteine Environment in Diabetic Retinopathy.
    Kowluru RA; Mohammad G
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Diabetes on Mitochondrial Morphology and Its Implications in Diabetic Retinopathy.
    Kim D; Roy S
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):10. PubMed ID: 32756920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy.
    Thomas AA; Biswas S; Feng B; Chen S; Gonder J; Chakrabarti S
    Diabetologia; 2019 Mar; 62(3):517-530. PubMed ID: 30612136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy.
    Santos JM; Kowluru RA
    Diabetes Metab Res Rev; 2013 Mar; 29(3):204-13. PubMed ID: 23255365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy.
    Trudeau K; Molina AJ; Guo W; Roy S
    Am J Pathol; 2010 Jul; 177(1):447-55. PubMed ID: 20522647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Long Non-Coding RNA HOTAIR Is a Critical Epigenetic Mediator of Angiogenesis in Diabetic Retinopathy.
    Biswas S; Feng B; Chen S; Liu J; Aref-Eshghi E; Gonder J; Ngo V; Sadikovic B; Chakrabarti S
    Invest Ophthalmol Vis Sci; 2021 Mar; 62(3):20. PubMed ID: 33724292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.
    Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q
    Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial DNA oxidative damage triggering mitochondrial dysfunction and apoptosis in high glucose-induced HRECs.
    Xie L; Zhu X; Hu Y; Li T; Gao Y; Shi Y; Tang S
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4203-9. PubMed ID: 18539942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy.
    Tewari S; Zhong Q; Santos JM; Kowluru RA
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4881-8. PubMed ID: 22743328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p.
    Zhang X; Yuan S; Liu J; Tang Y; Wang Y; Zhan J; Fan J; Nie X; Zhao Y; Wen Z; Li H; Chen C; Wang DW
    Mol Ther Nucleic Acids; 2022 Mar; 27():1127-1145. PubMed ID: 35251768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy.
    Kumar B; Kowluru A; Kowluru RA
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2985-92. PubMed ID: 26024084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ANRIL: A Regulator of VEGF in Diabetic Retinopathy.
    Thomas AA; Feng B; Chakrabarti S
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):470-480. PubMed ID: 28122089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aberrant expression of long noncoding RNAs in early diabetic retinopathy.
    Yan B; Tao ZF; Li XM; Zhang H; Yao J; Jiang Q
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):941-51. PubMed ID: 24436191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.