These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Tuning Bienenstock-Cooper-Munro learning rules in a two-terminal memristor for neuromorphic computing. Li Z; Liu P; Yang G; Jia C; Zhang W Phys Chem Chem Phys; 2023 Jun; 25(23):15920-15928. PubMed ID: 37260344 [TBL] [Abstract][Full Text] [Related]
8. High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing. Vishwanath SK; Febriansyah B; Ng SE; Das T; Acharya J; John RA; Sharma D; Dananjaya PA; Jagadeeswararao M; Tiwari N; Kulkarni MRC; Lew WS; Chakraborty S; Basu A; Mathews N Mater Horiz; 2024 Jun; 11(11):2643-2656. PubMed ID: 38516931 [TBL] [Abstract][Full Text] [Related]
9. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. John RA; Shah N; Vishwanath SK; Ng SE; Febriansyah B; Jagadeeswararao M; Chang CH; Basu A; Mathews N Nat Commun; 2021 Jun; 12(1):3681. PubMed ID: 34140514 [TBL] [Abstract][Full Text] [Related]
10. Artificial synapse based on 1,4-diphenylbutadiyne with femtojoule energy consumption. Liu J; Li Z; Jia C; Zhang W Phys Chem Chem Phys; 2023 Feb; 25(7):5453-5458. PubMed ID: 36745478 [TBL] [Abstract][Full Text] [Related]
11. Halide Perovskites for Memristive Data Storage and Artificial Synapses. Kwak KJ; Lee DE; Kim SJ; Jang HW J Phys Chem Lett; 2021 Sep; 12(37):8999-9010. PubMed ID: 34515487 [TBL] [Abstract][Full Text] [Related]
12. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Wang Z; Yin M; Zhang T; Cai Y; Wang Y; Yang Y; Huang R Nanoscale; 2016 Aug; 8(29):14015-22. PubMed ID: 27143476 [TBL] [Abstract][Full Text] [Related]
13. Room-Temperature Fabricated Multilevel Nonvolatile Lead-Free Cesium Halide Memristors for Reconfigurable In-Memory Computing. Su TK; Cheng WK; Chen CY; Wang WC; Chuang YT; Tan GH; Lin HC; Hou CH; Liu CM; Chang YC; Shyue JJ; Wu KC; Lin HW ACS Nano; 2022 Aug; 16(8):12979-12990. PubMed ID: 35815946 [TBL] [Abstract][Full Text] [Related]
15. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Wang J; Zhuge X; Zhuge F Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215 [TBL] [Abstract][Full Text] [Related]
16. A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Rachmuth G; Shouval HZ; Bear MF; Poon CS Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1266-74. PubMed ID: 22089232 [TBL] [Abstract][Full Text] [Related]
17. Signal Filtering Enabled by Spike Voltage-Dependent Plasticity in Metalloporphyrin-Based Memristors. Wang Z; Wang L; Wu Y; Bian L; Nagai M; Jv R; Xie L; Ling H; Li Q; Bian H; Yi M; Shi N; Liu X; Huang W Adv Mater; 2021 Oct; 33(43):e2104370. PubMed ID: 34510593 [TBL] [Abstract][Full Text] [Related]