These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36563243)

  • 21. The role of impulse on the initiation of particle movement under turbulent flow conditions.
    Diplas P; Dancey CL; Celik AO; Valyrakis M; Greer K; Akar T
    Science; 2008 Oct; 322(5902):717-20. PubMed ID: 18974347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves.
    Bose SK; Dey S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036304. PubMed ID: 19905209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model for intermittency of energy dissipation in turbulent flows.
    Lepreti F; Carbone V; Veltri P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026306. PubMed ID: 17025538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Universal properties of non-Hermitian viscoelastic channel flows.
    Li Y; Steinberg V
    Sci Rep; 2023 Jan; 13(1):1064. PubMed ID: 36658217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turbulent Systolic Flow Downstream of a Bioprosthetic Aortic Valve: Velocity Spectra, Wall Shear Stresses, and Turbulent Dissipation Rates.
    Becsek B; Pietrasanta L; Obrist D
    Front Physiol; 2020; 11():577188. PubMed ID: 33117194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pattern of breakdown of laminar flow into turbulent spots.
    Vinod N; Govindarajan R
    Phys Rev Lett; 2004 Sep; 93(11):114501. PubMed ID: 15447343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamical systems and the transition to turbulence in linearly stable shear flows.
    Eckhardt B; Faisst H; Schmiegel A; Schneider TM
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1868):1297-315. PubMed ID: 17984033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Similarity of Pulsating and Accelerating Turbulent Pipe Flows.
    Sundstrom LRJ; Cervantes MJ
    Flow Turbul Combust; 2018; 100(2):417-436. PubMed ID: 30069140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficiency of laminar and turbulent mixing in wall-bounded flows.
    Kadoch B; Bos WJT; Schneider K
    Phys Rev E; 2020 Apr; 101(4-1):043104. PubMed ID: 32422802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intermittency, Moments, and Friction Coefficient during the Subcritical Transition of Channel Flow.
    Liu J; Xiao Y; Li M; Tao J; Xu S
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.
    Hamlin ND; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.
    Premnath KN; Pattison MJ; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of a viscoelastic layer (mucus) to turbulent airflow in a rigid tube.
    Evrensel CA; Khan RU; Krumpe PE
    Technol Health Care; 2008; 16(5):355-66. PubMed ID: 19126974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale finite-wavelength modulation within turbulent shear flows.
    Prigent A; Grégoire G; Chaté H; Dauchot O; van Saarloos W
    Phys Rev Lett; 2002 Jul; 89(1):014501. PubMed ID: 12097045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Space-time correlations of fluctuating velocities in turbulent shear flows.
    Zhao X; He GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046316. PubMed ID: 19518342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Daphnia magna filtration efficiency and mobility in laminar to turbulent flows.
    Serra T; Barcelona A; Soler M; Colomer J
    Sci Total Environ; 2018 Apr; 621():626-633. PubMed ID: 29195209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic analysis of the time evolution of laminar-turbulent bands of plane Couette flow.
    Rolland J
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):121. PubMed ID: 26590151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.