These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36563280)

  • 21. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microcavity phonoritons - a coherent optical-to-microwave interface.
    Kuznetsov AS; Biermann K; Reynoso AA; Fainstein A; Santos PV
    Nat Commun; 2023 Sep; 14(1):5470. PubMed ID: 37723165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling microwave photons to a mechanical resonator using quantum interference.
    Rodrigues IC; Bothner D; Steele GA
    Nat Commun; 2019 Nov; 10(1):5359. PubMed ID: 31767836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator.
    Noguchi A; Yamazaki R; Tabuchi Y; Nakamura Y
    Nat Commun; 2020 Mar; 11(1):1183. PubMed ID: 32184387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields.
    Yu M; Shen H; Li J
    Phys Rev Lett; 2020 May; 124(21):213604. PubMed ID: 32530657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavity electromechanics with parametric mechanical driving.
    Bothner D; Yanai S; Iniguez-Rabago A; Yuan M; Blanter YM; Steele GA
    Nat Commun; 2020 Mar; 11(1):1589. PubMed ID: 32221296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-chip distribution of quantum information using traveling phonons.
    Zivari A; Fiaschi N; Burgwal R; Verhagen E; Stockill R; Gröblacher S
    Sci Adv; 2022 Nov; 8(46):eadd2811. PubMed ID: 36399558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet.
    Kani A; Sarma B; Twamley J
    Phys Rev Lett; 2022 Jan; 128(1):013602. PubMed ID: 35061494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducing micromechanical motion by optical excitation of a single quantum dot.
    Kettler J; Vaish N; de Lépinay LM; Besga B; de Assis PL; Bourgeois O; Auffèves A; Richard M; Claudon J; Gérard JM; Pigeau B; Arcizet O; Verlot P; Poizat JP
    Nat Nanotechnol; 2021 Mar; 16(3):283-287. PubMed ID: 33349683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems.
    Hei XL; Li PB; Pan XF; Nori F
    Phys Rev Lett; 2023 Feb; 130(7):073602. PubMed ID: 36867822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics.
    Grutter KE; Davanço MI; Srinivasan K
    Optica; 2015; 2(11):994-1001. PubMed ID: 26807432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton-coupled coherent magnons in a 2D semiconductor.
    Bae YJ; Wang J; Scheie A; Xu J; Chica DG; Diederich GM; Cenker J; Ziebel ME; Bai Y; Ren H; Dean CR; Delor M; Xu X; Roy X; Kent AD; Zhu X
    Nature; 2022 Sep; 609(7926):282-286. PubMed ID: 36071189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optomechanically-induced nonreciprocal conversion between microwave and optical photons.
    Xing FF; Qin LG; Tian LJ; Wu XY; Huang JH
    Opt Express; 2023 Feb; 31(5):7120-7133. PubMed ID: 36859849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optomechanical Generation of Coherent GHz Vibrations in a Phononic Waveguide.
    Madiot G; Ng RC; Arregui G; Florez O; Albrechtsen M; Stobbe S; García PD; Sotomayor-Torres CM
    Phys Rev Lett; 2023 Mar; 130(10):106903. PubMed ID: 36962028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Converting microwave and telecom photons with a silicon photonic nanomechanical interface.
    Arnold G; Wulf M; Barzanjeh S; Redchenko ES; Rueda A; Hease WJ; Hassani F; Fink JM
    Nat Commun; 2020 Sep; 11(1):4460. PubMed ID: 32901014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A chip-integrated coherent photonic-phononic memory.
    Merklein M; Stiller B; Vu K; Madden SJ; Eggleton BJ
    Nat Commun; 2017 Sep; 8(1):574. PubMed ID: 28924261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnonic Frequency Comb in the Magnomechanical Resonator.
    Xu GT; Zhang M; Wang Y; Shen Z; Guo GC; Dong CH
    Phys Rev Lett; 2023 Dec; 131(24):243601. PubMed ID: 38181134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topological lattices realized in superconducting circuit optomechanics.
    Youssefi A; Kono S; Bancora A; Chegnizadeh M; Pan J; Vovk T; Kippenberg TJ
    Nature; 2022 Dec; 612(7941):666-672. PubMed ID: 36543952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.