BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 36563314)

  • 1. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes.
    Camperi J; Moshref M; Dai L; Lee HY
    Anal Chem; 2022 Jan; 94(2):1432-1440. PubMed ID: 34958212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA.
    Mekler V; Minakhin L; Semenova E; Kuznedelov K; Severinov K
    Nucleic Acids Res; 2016 Apr; 44(6):2837-45. PubMed ID: 26945042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes.
    Nguyen MT; Kim SA; Cheng YY; Hong SH; Jin YS; Han NS
    J Microbiol Biotechnol; 2023 Sep; 33(9):1228-1237. PubMed ID: 37415091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.
    Walther J; Porenta D; Wilbie D; Seinen C; Benne N; Yang Q; de Jong OG; Lei Z; Mastrobattista E
    Eur J Pharm Biopharm; 2024 Mar; 196():114207. PubMed ID: 38325664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupting Protein Expression with Double-Clicked sgRNA-Cas9 Complexes: A Modular Approach to CRISPR Gene Editing.
    Tijaro-Bulla S; Osman EA; St Laurent CD; McCord KA; Macauley MS; Gibbs JM
    ACS Chem Biol; 2023 Oct; 18(10):2156-2162. PubMed ID: 37556411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptazyme-mediated direct modulation of post-transcriptional sgRNA level for conditional genome editing and gene expression.
    Chen H; Li Y; Du C; Li Y; Zhao J; Zheng X; Mao Q; Xia H
    J Biotechnol; 2018 Dec; 288():23-29. PubMed ID: 30391232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
    Zhang S; Shen J; Li D; Cheng Y
    Theranostics; 2021; 11(2):614-648. PubMed ID: 33391496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized CRISPR/Cas9 system for gene knockout in chicken DF1 cells.
    Zou K; Wang F; Zhang Z; Zhou Y; Li P; Wang D; Zhu M; Jia C; Wei Z
    Poult Sci; 2023 Oct; 102(10):102970. PubMed ID: 37562129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core Hairpin Structure of SpCas9 sgRNA Functions in a Sequence- and Spatial Conformation-Dependent Manner.
    Jiang M; Ye Y; Li J
    SLAS Technol; 2021 Feb; 26(1):92-102. PubMed ID: 32486929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile 3' Functionalization of CRISPR Single Guide RNA.
    Palumbo CM; Gutierrez-Bujari JM; O'Geen H; Segal DJ; Beal PA
    Chembiochem; 2020 Jun; 21(11):1633-1640. PubMed ID: 31943634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.