These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36563351)

  • 21. Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance.
    Wang K; Chen Y; Tian R; Li H; Zhou Y; Duan H; Liu H
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11333-11342. PubMed ID: 29533582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hollow CuS@Mn(OH)
    Zhang S; Zhao Z; Gao Z; Liu P; Jiao J
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):60-69. PubMed ID: 34628320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flower-like NiO to flower-like NiO/Ni@C microspheres: An effective strategy to comprehensively improve the loss capabilities.
    Rao Y; Qi X; Peng Q; Chen Y; Gong X; Xie R; Zhong W
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):981-993. PubMed ID: 36152622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable Fabrication of Fe₃O₄/ZnO Core⁻Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2⁻18 GHz Frequency Range.
    Sun X; Ma G; Lv X; Sui M; Li H; Wu F; Wang J
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Core-Shell Structured SiO
    Du Z; Wang D; Zhang X; Yi Z; Tang J; Yang P; Cai R; Yi S; Rao J; Zhang Y
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Outstanding comprehensive performance versus facile synthesis: Constructing core and shell-interchangeable nanocomposites as microwave absorber.
    Li Z; Yang E; Qi X; Xie R; Jing T; Qin S; Deng C; Zhong W
    J Colloid Interface Sci; 2020 Apr; 565():227-238. PubMed ID: 31972336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the Electromagnetic Wave Absorption Performances of Designed Co
    Li H; Bao S; Li Y; Huang Y; Chen J; Zhao H; Jiang Z; Kuang Q; Xie Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28839-28849. PubMed ID: 30079724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe
    Liu Y; Fu Y; Liu L; Li W; Guan J; Tong G
    ACS Appl Mater Interfaces; 2018 May; 10(19):16511-16520. PubMed ID: 29672019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yolk-shelled Co@SiO
    Wang B; Fu Y; Li J; Liu T
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1540-1550. PubMed ID: 34583050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Nest-Like Architecture of Core-Shell CoFe
    Wang X; Zhu T; Chang S; Lu Y; Mi W; Wang W
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11252-11264. PubMed ID: 32045209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption.
    Liu H; Cui G; Li L; Zhang Z; Lv X; Wang X
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2-18 GHz.
    Wang Y; Pang Z; Xu H; Li C; Zhou W; Jiang X; Yu L
    J Colloid Interface Sci; 2022 Aug; 620():107-118. PubMed ID: 35421747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled fabrication of core-shell γ-Fe
    Kou X; Zhao Y; Xu L; Kang Z; Wang Y; Zou Z; Huang P; Wang Q; Su G; Yang Y; Sun Y
    J Colloid Interface Sci; 2022 Jun; 615():685-696. PubMed ID: 35168017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires.
    Duan Y; Xiao Z; Yan X; Gao Z; Tang Y; Hou L; Li Q; Ning G; Li Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40078-40087. PubMed ID: 30379515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation.
    Liang C; Wang Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40690-40696. PubMed ID: 29088527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption.
    Qiu Y; Wen B; Yang H; Lin Y; Cheng Y; Jin L
    J Colloid Interface Sci; 2021 Nov; 602():242-250. PubMed ID: 34119761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of Metal Core and Carbon Shell on the Microwave Absorption Performance of Cu-C Core-Shell Nanoparticles.
    Kuang D; Wang S; Deng L; Duan W; Xiao G; Sun X; Chen C
    Inorg Chem; 2023 Apr; 62(14):5487-5495. PubMed ID: 36976173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties.
    Lv H; Liang X; Ji G; Zhang H; Du Y
    ACS Appl Mater Interfaces; 2015 May; 7(18):9776-83. PubMed ID: 25881334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption.
    Wang Y; Gao YN; Yue TN; Chen XD; Che R; Wang M
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):210-218. PubMed ID: 34500420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing 1T/2H MoS
    Lyu L; Wang F; Li B; Zhang X; Qiao J; Yang Y; Liu J
    J Colloid Interface Sci; 2021 Mar; 586():613-620. PubMed ID: 33190837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.