BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36563442)

  • 1. Mechanochemical modified nitrogen-rich biochar derived from shrimp shell: Dominant mechanism in pyridinic-N for aquatic methylene blue removal.
    Wang M; Yan J; Xu Y; Zhou X; Diao Y; Wang H; Bian J; Liu C; Quan G
    J Environ Manage; 2023 Mar; 329():117049. PubMed ID: 36563442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe
    Li Y; Zimmerman AR; He F; Chen J; Han L; Chen H; Hu X; Gao B
    Sci Total Environ; 2020 Jun; 722():137972. PubMed ID: 32208286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions.
    Zhang Y; Zheng Y; Yang Y; Huang J; Zimmerman AR; Chen H; Hu X; Gao B
    Bioresour Technol; 2021 Oct; 337():125432. PubMed ID: 34171704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous magnetic biochar derived from common reed (Phragmites australis) for rapid and efficient removal of methylene blue from aqueous media.
    Mortada WI; Ghaith MM; Khedr NE; Ellethy MI; Mohsen AW; Shafik AL
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):42330-42341. PubMed ID: 38866933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption properties and mechanisms of methylene blue and tetracycline by nano-silica biochar composites activated by KOH.
    Liu J; Lin Q; Gao J; Jia X; Cai M; Liang Q
    Chemosphere; 2023 Oct; 337():139395. PubMed ID: 37399993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Adsorption of Methylene Blue by Porous Biochar Derived from Soybean Dreg Using a One-Pot Synthesis Method.
    Ying Z; Chen X; Li H; Liu X; Zhang C; Zhang J; Yi G
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33513953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characterizations and methylene blue pollutant removal efficiency of ZnO nanorods/biochar hybrids.
    Chen HH; Lu LS; Jhang JJ; Lee CH; Chen H; Chen KF
    Water Environ Res; 2023 Oct; 95(10):e10930. PubMed ID: 37746676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II).
    Xiao J; Hu R; Chen G
    J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of pozzolan and sugarcane bagasse derived geopolymer-biochar composites for methylene blue sequestration from aqueous medium.
    Dzoujo HT; Shikuku VO; Tome S; Akiri S; Kengne NM; Abdpour S; Janiak C; Etoh MA; Dina D
    J Environ Manage; 2022 Sep; 318():115533. PubMed ID: 35949096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.
    Tran HN; You SJ; Chao HP
    J Environ Manage; 2017 Mar; 188():322-336. PubMed ID: 28006742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sodium dodecyl sulfate coating on adsorption of methylene blue by biochar from aqueous solution.
    Que W; Jiang L; Wang C; Liu Y; Zeng Z; Wang X; Ning Q; Liu S; Zhang P; Liu S
    J Environ Sci (China); 2018 Aug; 70():166-174. PubMed ID: 30037403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution.
    Lawtae P; Tangsathitkulchai C
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of citric acid modification on the properties of hydrochar and pyrochar and their adsorption performance toward methylene blue: crucial roles of minerals and oxygen functional groups.
    Fan X; Wang S; Zhang Y; Zhao M; Zhou N; Fan S
    Environ Monit Assess; 2024 Jun; 196(7):664. PubMed ID: 38926195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable synergy between sawdust biochar and attapulgite/diatomite after co-ball milling to adsorb methylene blue.
    Jiang F; Li F; Zimmerman AR; Yu Z; Ji L; Wei C; Zhang X; Gao B
    RSC Adv; 2023 May; 13(21):14384-14392. PubMed ID: 37180009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.
    Li R; Liang W; Wang JJ; Gaston LA; Huang D; Huang H; Lei S; Awasthi MK; Zhou B; Xiao R; Zhang Z
    J Environ Manage; 2018 Apr; 212():77-87. PubMed ID: 29428656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueous methylene blue adsorption.
    Wang B; Gao B; Wan Y
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11535-11541. PubMed ID: 29464600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions.
    Amin MT; Alazba AA; Shafiq M
    Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface area, electrostatic force, and functional groups.
    Zhang Z; Huang G; Zhang P; Shen J; Wang S; Li Y
    Sci Total Environ; 2023 Jan; 856(Pt 1):159037. PubMed ID: 36179839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption.
    Xi J; Zhang R; Ye L; Du X; Lu X
    J Environ Manage; 2022 Feb; 304():114297. PubMed ID: 34933264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature.
    Liu S; Li J; Xu S; Wang M; Zhang Y; Xue X
    Bioresour Technol; 2019 Jun; 282():48-55. PubMed ID: 30851573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.