These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36563775)

  • 1. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond.
    Kilian D; Holtzhausen S; Groh W; Sembdner P; Czichy C; Lode A; Stelzer R; Gelinsky M
    Acta Biomater; 2023 Mar; 158():308-323. PubMed ID: 36563775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering.
    Shyam R; Palaniappan A
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering.
    Diaz-Gomez L; Smith BT; Kontoyiannis PD; Bittner SM; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2019 Jan; 25(1):12-24. PubMed ID: 30421648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.
    Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B
    ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D plotting of growth factor loaded calcium phosphate cement scaffolds.
    Akkineni AR; Luo Y; Schumacher M; Nies B; Lode A; Gelinsky M
    Acta Biomater; 2015 Nov; 27():264-274. PubMed ID: 26318366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process.
    Kilian D; von Witzleben M; Lanaro M; Wong CS; Vater C; Lode A; Allenby MC; Woodruff MA; Gelinsky M
    J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients.
    Diaz-Gomez L; Kontoyiannis PD; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2019 Jul; 25(7):411-420. PubMed ID: 31169080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.
    Gaihre B; Potes MDA; Liu X; Tilton M; Camilleri E; Rezaei A; Serdiuk V; Park S; Lucien F; Terzic A; Lu L
    J Biomed Mater Res A; 2024 May; 112(5):672-684. PubMed ID: 37971074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review.
    Darghiasi SF; Farazin A; Ghazali HS
    J Mech Behav Biomed Mater; 2024 Mar; 151():106391. PubMed ID: 38211501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing.
    Carvalho DN; Dani S; Sotelo CG; Pérez-Martín RI; Reis RL; Silva TH; Gelinsky M
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37531962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue.
    Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ
    Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid fabrication and screening of tailored functional 3D biomaterials.
    Conde-González A; Dutta D; Wallace R; Callanan A; Bradley M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110489. PubMed ID: 31923957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.