These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36563802)

  • 1. Valorization of wheat straw in food packaging: A source of cellulose.
    Bangar SP; Kajla P; Ghosh T
    Int J Biol Macromol; 2023 Feb; 227():762-776. PubMed ID: 36563802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw.
    Kontogianni N; Barampouti EM; Mai S; Malamis D; Loizidou M
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35648-35656. PubMed ID: 31792789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of lignin-containing cellulose bio-composite based on unbleached corncob and wheat straw pulp.
    Yu S; Gan M; Chen Y; Hu Z; Xie Y; Feng Q
    Int J Biol Macromol; 2022 May; 208():741-747. PubMed ID: 35367472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw.
    Oliva-Taravilla A; Moreno AD; Demuez M; Ibarra D; Tomás-Pejó E; González-Fernández C; Ballesteros M
    Bioresour Technol; 2015 Jan; 175():209-15. PubMed ID: 25459824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced enzymatic hydrolysis of wheat straw by two-step pretreatment combining alkalization and adsorption.
    Wu M; Liu H; Guo J; Yang C
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9831-9842. PubMed ID: 30187102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents.
    Wan X; Yao F; Tian D; Shen F; Hu J; Zeng Y; Yang G; Zhang Y; Deng S
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31817992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose in green food packaging.
    Vilarinho F; Sanches Silva A; Vaz MF; Farinha JP
    Crit Rev Food Sci Nutr; 2018 Jun; 58(9):1526-1537. PubMed ID: 28125279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues.
    Fu D; Mazza G; Tamaki Y
    J Agric Food Chem; 2010 Mar; 58(5):2915-22. PubMed ID: 20146421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications.
    Boarino A; Klok HA
    Biomacromolecules; 2023 Mar; 24(3):1065-1077. PubMed ID: 36745923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycerol Assisted Pretreatment of Lignocellulose Wheat Straw Materials as a Promising Approach for Fabrication of Sustainable Fibrous Filler for Biocomposites.
    Mahmood H; Mehmood S; Shakeel A; Iqbal T; Kazmi MA; Khurram AR; Moniruzzaman M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33530601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties.
    Borrero-López AM; Valencia C; Ibarra D; Ballesteros I; Franco JM
    Int J Biol Macromol; 2022 Jan; 195():412-423. PubMed ID: 34871659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Processing Time of Steam-Explosion for the Extraction of Cellulose Fibers from
    Pérez-Limiñana MA; Pérez-Aguilar H; Ruzafa-Silvestre C; Orgilés-Calpena E; Arán-Ais F
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.
    Chen HZ; Liu ZH
    Biotechnol Biofuels; 2014; 7(1):137. PubMed ID: 25426164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications.
    Kumari SVG; Pakshirajan K; Pugazhenthi G
    Int J Biol Macromol; 2022 Nov; 221():163-182. PubMed ID: 36067847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials.
    Jayasekara S; Dissanayake L; Jayakody LN
    Int J Food Microbiol; 2022 Sep; 377():109785. PubMed ID: 35752069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging.
    Lionetto F; Esposito Corcione C
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging.
    Pasquier E; Mattos BD; Koivula H; Khakalo A; Belgacem MN; Rojas OJ; Bras J
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30236-30245. PubMed ID: 35727693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.
    Rosgaard L; Pedersen S; Meyer AS
    Appl Biochem Biotechnol; 2007 Dec; 143(3):284-96. PubMed ID: 18057455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of lignocellulosic fractions from Posidonia oceanica to improve barrier and mechanical properties of bio-based packaging materials.
    Benito-González I; López-Rubio A; Martínez-Sanz M
    Int J Biol Macromol; 2018 Oct; 118(Pt A):542-551. PubMed ID: 29935241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.