These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36563816)
1. Bionic structure and blood compatibility of highly oriented homo-epitaxially crystallized poly(l-lactic acid). Yang W; Wu T; Chen Y; Huang Q; Ao J; Ming M; Gao X; Li Z; Chen B Int J Biol Macromol; 2023 Feb; 227():749-761. PubMed ID: 36563816 [TBL] [Abstract][Full Text] [Related]
2. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure. Li Z; Ye L; Zhao X; Coates P; Caton-Rose F; Martyn M J Biomed Mater Res A; 2016 May; 104(5):1082-9. PubMed ID: 26743130 [TBL] [Abstract][Full Text] [Related]
3. A Novel Stereocomplex Poly(lactic acid) with Shish-Kebab Crystals and Bionic Surface Structures as Bioimplant Materials for Tissue Engineering Applications. Li J; Ye W; Fan Z; Cao L ACS Appl Mater Interfaces; 2021 Feb; 13(4):5469-5477. PubMed ID: 33486951 [TBL] [Abstract][Full Text] [Related]
4. Oriented homo-epitaxial crystallization of polylactic acid displaying a biomimetic structure and improved blood compatibility. Li Z; Wu T; Chen Y; Gao X; Ye J; Jin Y; Chen B J Biomed Mater Res A; 2022 Mar; 110(3):684-695. PubMed ID: 34651453 [TBL] [Abstract][Full Text] [Related]
5. Bionic structure and biocompatibilities of long chain branched poly(L-lactic acid) oriented microcellular foaming material. Chen Y; Yang W; Hu Z; Gao X; Ye J; Song X; Chen B; Li Z Int J Biol Macromol; 2024 Apr; 263(Pt 2):130467. PubMed ID: 38423433 [TBL] [Abstract][Full Text] [Related]
6. Preparation and properties of oriented microcellular Poly(l-lactic acid) foaming material. Chen Y; Yang W; Hu Z; Gao X; Ye J; Song X; Chen B; Li Z Int J Biol Macromol; 2022 Jun; 211():460-469. PubMed ID: 35569677 [TBL] [Abstract][Full Text] [Related]
7. Improving Mechanical Properties and Biocompatibilities by Highly Oriented Long Chain Branching Poly(lactic acid) with Bionic Surface Structures. Li J; Chen Q; Zhang Q; Fan T; Gong L; Ye W; Fan Z; Cao L ACS Appl Mater Interfaces; 2020 Mar; 12(12):14365-14375. PubMed ID: 32129593 [TBL] [Abstract][Full Text] [Related]
8. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. Li Z; Zhao X; Ye L; Coates P; Caton-Rose F; Martyn M J Biomater Appl; 2014 Mar; 28(7):978-89. PubMed ID: 23733838 [TBL] [Abstract][Full Text] [Related]
9. Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Im SH; Jung Y; Jang Y; Kim SH Biofabrication; 2016 Oct; 8(4):045010. PubMed ID: 27775924 [TBL] [Abstract][Full Text] [Related]
10. Self-Reinforced PTLG Copolymer with Shish Kebab Structures and a Bionic Surface as Bioimplant Materials for Tissue Engineering Applications. Li J; Jiang P; Yang J; Zhang Q; Chen H; Wang Z; Liu C; Fan T; Cao L; Sui J ACS Appl Mater Interfaces; 2024 Feb; 16(8):11062-11075. PubMed ID: 38378449 [TBL] [Abstract][Full Text] [Related]
11. Multiple shape memory behavior of highly oriented long-chain-branched poly(lactic acid) and its recovery mechanism. Li J; Zhao X; Ye L; Coates P; Caton-Rose F J Biomed Mater Res A; 2019 Apr; 107(4):872-883. PubMed ID: 30615252 [TBL] [Abstract][Full Text] [Related]
12. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications. Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698 [TBL] [Abstract][Full Text] [Related]
13. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
14. Controlled in vitro degradation behavior of highly oriented long-chain-branched poly(lactic acid) produced by solid-phase die drawing. Li R; Li J; Zhao X; Ye L; Coates P; Caton-Rose F J Biomed Mater Res A; 2019 Jul; 107(7):1522-1531. PubMed ID: 30821039 [TBL] [Abstract][Full Text] [Related]
15. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends. Park JW; Doi Y; Iwata T Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). Tsuji H; Sawada M; Bouapao L ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Im SH; Kim CY; Jung Y; Jang Y; Kim SH Biomater Sci; 2017 Feb; 5(3):422-431. PubMed ID: 28184401 [TBL] [Abstract][Full Text] [Related]
18. Filler-Enhanced Piezoelectricity of Poly-L-Lactide and Its Use as a Functional Ultrasound-Activated Biomaterial. Vukomanović M; Gazvoda L; Kurtjak M; Maček-Kržmanc M; Spreitzer M; Tang Q; Wu J; Ye H; Chen X; Mattera M; Puigmartí-Luis J; Pane SV Small; 2023 Aug; 19(35):e2301981. PubMed ID: 37186376 [TBL] [Abstract][Full Text] [Related]
19. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. Pan P; Liang Z; Cao A; Inoue Y ACS Appl Mater Interfaces; 2009 Feb; 1(2):402-11. PubMed ID: 20353230 [TBL] [Abstract][Full Text] [Related]