These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3656410)

  • 1. Superhelical DNA with local substructures. A generalization of the topological constraint in terms of the intersection number and the ladder-like correspondence surface.
    White JH; Bauer WR
    J Mol Biol; 1987 May; 195(1):205-13. PubMed ID: 3656410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the twist and the writhe for representative models of DNA.
    White JH; Bauer WR
    J Mol Biol; 1986 May; 189(2):329-41. PubMed ID: 3746909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of the twist difference to DNA structural analysis.
    White JH; Bauer WR
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):772-6. PubMed ID: 3422459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the number of superhelical turns by the hyperchromicity of partially denatured covalently-closed DNA molecules.
    Dougherty G; Koller T
    Nucleic Acids Res; 1982 Jan; 10(2):525-38. PubMed ID: 6895940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational transitions in closed circular DNA molecules. I. Topological and energetical considerations.
    Luchnik AN
    Mol Biol Rep; 1980 Mar; 6(1):3-9. PubMed ID: 6248767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homologous pairing and topological linkage of DNA molecules by combined action of E. coli RecA protein and topoisomerase I.
    Cunningham RP; Wu AM; Shibata T; DasGupta C; Radding CM
    Cell; 1981 Apr; 24(1):213-23. PubMed ID: 6263487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA twist as a transcriptional sensor for environmental changes.
    Wang JY; Syvanen M
    Mol Microbiol; 1992 Jul; 6(14):1861-6. PubMed ID: 1508037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twist and writhe of a DNA loop containing intrinsic bends.
    Bauer WR; Lund RA; White JH
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):833-7. PubMed ID: 8430093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational isomerization of the Holliday junction associated with a cruciform during branch migration in supercoiled plasmid DNA.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1988 May; 201(1):19-30. PubMed ID: 3418696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations.
    Lepage T; Képès F; Junier I
    Biophys J; 2015 Jul; 109(1):135-43. PubMed ID: 26153710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in positively and negatively supercoiled DNA.
    Brahms S; Nakasu S; Kikuchi A; Brahms JG
    Eur J Biochem; 1989 Sep; 184(2):297-303. PubMed ID: 2792102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twist, writhe, and geometry of a DNA loop containing equally spaced coplanar bends.
    White JH; Lund RA; Bauer WR
    Biopolymers; 1996 Feb; 38(2):235-50. PubMed ID: 8589256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution.
    Brady GW; Satkowski M; Foos D; Benham CJ
    J Mol Biol; 1987 May; 195(1):185-91. PubMed ID: 3656409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of supercoil-stabilized DNA cruciforms.
    Shlyakhtenko LS; Potaman VN; Sinden RR; Lyubchenko YL
    J Mol Biol; 1998 Jul; 280(1):61-72. PubMed ID: 9653031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On higher buckling transitions in supercoiled DNA.
    Schlick T; Olson WK; Westcott T; Greenberg JP
    Biopolymers; 1994 May; 34(5):565-97. PubMed ID: 8003619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WASP: a software package for correctly characterizing the topological development of ribbon structures.
    Sierzega Z; Wereszczynski J; Prior C
    Sci Rep; 2021 Jan; 11(1):1527. PubMed ID: 33452342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the superhelicity on the double helix twist angle in DNA.
    Belintsev BN; Gagua AV; Nedospasov SA
    Nucleic Acids Res; 1979 Mar; 6(3):983-92. PubMed ID: 220593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of the strand separation transition in superhelical DNA.
    Benham CJ
    J Mol Biol; 1992 Jun; 225(3):835-47. PubMed ID: 1602485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.