BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36564217)

  • 1. Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements.
    Zhang B; Bottenus N; Jin FQ; Nightingale KR
    Ultrasound Med Biol; 2023 Mar; 49(3):734-749. PubMed ID: 36564217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution.
    Hollender PJ; Rosenzweig SJ; Nightingale KR; Trahey GE
    Ultrasound Med Biol; 2015 Apr; 41(4):1043-57. PubMed ID: 25701531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging.
    Deng Y; Palmeri ML; Rouze NC; Haystead CM; Nightingale KR
    Ultrasound Med Biol; 2018 Feb; 44(2):303-310. PubMed ID: 29169880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thee-Dimensional Single-Track-Location Shear Wave Elasticity Imaging.
    Hollender P; Lipman SL; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1784-1794. PubMed ID: 28885153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging.
    Yoon H; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1439-1449. PubMed ID: 28708552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.
    Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.
    Deng Y; Palmeri ML; Rouze NC; Rosenzweig SJ; Abdelmalek MF; Nightingale KR
    Ultrasound Med Biol; 2015 Jul; 41(7):1948-57. PubMed ID: 25896024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined ARFI and Shear Wave Imaging of Prostate Cancer: Optimizing Beam Sequences and Parameter Reconstruction Approaches.
    Chan DY; Morris DC; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2023 Jul; 45(4):175-186. PubMed ID: 37129257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging.
    Ahmed R; Gerber SA; McAleavey SA; Schifitto G; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1402-1414. PubMed ID: 29993543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.
    Morris DC; Chan DY; Palmeri ML; Polascik TJ; Foo WC; Nightingale KR
    Ultrasound Med Biol; 2021 Jul; 47(7):1670-1680. PubMed ID: 33832823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force.
    Feng F; Goswami S; Khan S; McAleavey SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3528-3539. PubMed ID: 34236961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
    Amador C; Song P; Meixner DD; Chen S; Urban MW
    Ultrasound Med Biol; 2016 May; 42(5):1031-41. PubMed ID: 26803391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography.
    Ahmed R; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2057-2068. PubMed ID: 32746171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics.
    Sarvazyan AP; Rudenko OV; Swanson SD; Fowlkes JB; Emelianov SY
    Ultrasound Med Biol; 1998 Nov; 24(9):1419-35. PubMed ID: 10385964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributing Synthetic Focusing Over Multiple Push-Detect Events Enhances Shear Wave Elasticity Imaging Performance.
    Ahmed R; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jul; 66(7):1170-1184. PubMed ID: 30990427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams.
    Song P; Urban MW; Manduca A; Zhao H; Greenleaf JF; Chen S
    IEEE Trans Med Imaging; 2013 Aug; 32(8):1435-47. PubMed ID: 23591479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound.
    Yeh CL; Chen BR; Tseng LY; Jao P; Su TH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1295-307. PubMed ID: 26168176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI.
    Knight AE; Jin FQ; Paley CT; Rouze NC; Moavenzadeh SR; Pietrosimone LS; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3145-3154. PubMed ID: 36054392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanned 3-D Intracardiac ARFI and SWEI for Imaging Radio-Frequency Ablation Lesions.
    Hollender P; Kuo L; Chen V; Eyerly S; Wolf P; Trahey G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1034-1044. PubMed ID: 28410102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.