BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36564339)

  • 1. Selective Electrochemical Hydrogenation of Phenol with Earth-abundant Ni-MoO
    Zhou P; Guo SX; Li L; Ueda T; Nishiwaki Y; Huang L; Zhang Z; Zhang J
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202214881. PubMed ID: 36564339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Roles of the CoO/Co Heterostructure and Pt Single Atoms for High-Efficiency Electrocatalytic Hydrogenation of Lignin-Derived Bio-Oils.
    Tong S; Gao X; Zhou H; Shi Q; Wu Y; Chen W
    Inorg Chem; 2023 Nov; 62(46):19123-19134. PubMed ID: 37945002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts.
    Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions.
    Carroll KJ; Burger T; Langenegger L; Chavez S; Hunt ST; Román-Leshkov Y; Brushett FR
    ChemSusChem; 2016 Aug; 9(15):1904-10. PubMed ID: 27337680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the surface adsorption properties of alumina-supported Pd catalysts for the electrocatalytic hydrogenation of phenol.
    Cirtiu CM; Hassani HO; Bouchard NA; Rowntree PA; Ménard H
    Langmuir; 2006 Jul; 22(14):6414-21. PubMed ID: 16800708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO
    Kuwahara Y; Mihogi T; Hamahara K; Kusu K; Kobayashi H; Yamashita H
    Chem Sci; 2021 Jul; 12(29):9902-9915. PubMed ID: 34349963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Hydrodeoxygenation of Bio-oil via Bimetallic Ni-V Catalysts Modified by Cross-Surface Migrated-Carbon from Biochar.
    Wu Y; Sun Y; Liang K; Yang Z; Tu R; Fan X; Cheng S; Yu H; Jiang E; Xu X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21482-21498. PubMed ID: 33928779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni
    Bao S; Liu T; Fu H; Xu Z; Qu X; Zheng S; Zhu D
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45949-45959. PubMed ID: 37748196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan.
    Wu Q; Wang L; Zhao B; Huang L; Yu S; Ragauskas AJ
    J Colloid Interface Sci; 2022 Jan; 605():82-90. PubMed ID: 34311315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Situ-Formed Potassium-Modified Nickel-Zinc Carbide Boosts Production of Higher Alcohols beyond CH
    Wang J; Wang T; Xi Y; Gao G; Sun P; Li F
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202311335. PubMed ID: 37646093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts.
    Zhang J; Dasgupta A; Chen Z; Xu D; Savage PE; Guo Y
    Water Res; 2019 Apr; 152():12-20. PubMed ID: 30660094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase.
    Yoon Y; Rousseau R; Weber RS; Mei D; Lercher JA
    J Am Chem Soc; 2014 Jul; 136(29):10287-98. PubMed ID: 24987925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO
    Ye F; Zhang S; Cheng Q; Long Y; Liu D; Paul R; Fang Y; Su Y; Qu L; Dai L; Hu C
    Nat Commun; 2023 Apr; 14(1):2040. PubMed ID: 37041142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Electrochemical Hydrogenation of Benzaldehyde to Benzyl Alcohol on Pd@Ni-MOF by Modifying the Adsorption Configuration.
    Gong L; Zhang CY; Li J; Montaña-Mora G; Botifoll M; Guo T; Arbiol J; Zhou JY; Kallio T; Martínez-Alanis PR; Cabot A
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):6948-6957. PubMed ID: 38305160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling Hydrogenation of Guaiacol with In Situ Hydrogen Production by Glycerol Aqueous Reforming over Ni/Al
    Chen Z; Kukushkin RG; Yeletsky PM; Saraev AA; Bulavchenko OA; Millan M
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arousing the Reactive Fe Sites in Pyrite (FeS
    Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M
    Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Selective Tandem Electroreduction of CO
    Meng DL; Zhang MD; Si DH; Mao MJ; Hou Y; Huang YB; Cao R
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25485-25492. PubMed ID: 34533874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterostructured Ru/Ni(OH)
    Ao W; Cheng C; Ren H; Fan Z; Yin P; Qin Q; Chen ZN; Dai L
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):45042-45050. PubMed ID: 36149741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Pd Nanoparticles Stabilized by Modified Montmorillonite for Efficient Hydrodeoxygenation of Lignin-Derived Phenolic Compounds in Water.
    Wang X; Li C; Guo X; Wang Z; Cheng R; Xu T; Li Y; Wang J; Xu H
    Front Chem; 2022; 10():961814. PubMed ID: 35991592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes.
    Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B
    Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.