These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 36564355)

  • 1. Metal Fluoride Cathode Materials for Lithium Rechargeable Batteries: Focus on Iron Fluorides.
    Sun L; Li Y; Feng W
    Small Methods; 2023 Feb; 7(2):e2201152. PubMed ID: 36564355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis.
    Wang F; Kim SW; Seo DH; Kang K; Wang L; Su D; Vajo JJ; Wang J; Graetz J
    Nat Commun; 2015 Mar; 6():6668. PubMed ID: 25808876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal chloride cathodes for next-generation rechargeable lithium batteries.
    Dai Y; Zhang S; Wen J; Song Z; Wang T; Zhang R; Fan X; Luo W
    iScience; 2024 Apr; 27(4):109557. PubMed ID: 38623342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium Iron Phosphate and Layered Transition Metal Oxide Cathode for Power Batteries: Attenuation Mechanisms and Modification Strategies.
    Zhang G; Li M; Ye Z; Chen T; Cao J; Yang H; Ma C; Jia Z; Xie J; Cui N; Xiong Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application.
    Sang P; Chen Q; Wang DY; Guo W; Fu Y
    Chem Rev; 2023 Feb; ():. PubMed ID: 36757873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting the Electrochemical Performance of Primary and Secondary Lithium Batteries with Mn-Doped All-Fluoride Cathodes.
    Luo S; Gao M; Cai D; Zhu L; Lai C; Peng Y; Yue H; Xie H; Yuan Z
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28719-28730. PubMed ID: 38801672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances of Organosulfur Materials for Rechargeable Metal Batteries.
    Guo W; Wang DY; Chen Q; Fu Y
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103989. PubMed ID: 34825523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.
    Yabuuchi N; Komaba S
    Sci Technol Adv Mater; 2014 Aug; 15(4):043501. PubMed ID: 27877694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hidden Negative Issues and Possible Solutions for Advancing the Development of High-Energy-Density in Lithium Batteries: A Review.
    Yamada A
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401739. PubMed ID: 38641888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives.
    Xie Z; Sun L; Sajid M; Feng Y; Lv Z; Chen W
    Chem Soc Rev; 2024 Jul; ():. PubMed ID: 39007548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.
    Chen R; Luo R; Huang Y; Wu F; Li L
    Adv Sci (Weinh); 2016 Oct; 3(10):1600051. PubMed ID: 27840796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review.
    Chen C; Lee CS; Tang Y
    Nanomicro Lett; 2023 May; 15(1):121. PubMed ID: 37127729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrochlore-Type Iron Hydroxy Fluorides as Low-Cost Lithium-Ion Cathode Materials for Stationary Energy Storage.
    Baumgärtner JF; Wörle M; Guntlin CP; Krumeich F; Siegrist S; Vogt V; Stoian DC; Chernyshov D; van Beek W; Kravchyk KV; Kovalenko MV
    Adv Mater; 2023 Dec; 35(49):e2304158. PubMed ID: 37522526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Strategies for Suppression of Mn Dissolution in Rechargeable Battery Cathode Materials.
    Ren Q; Yuan Y; Wang S
    ACS Appl Mater Interfaces; 2021 Nov; ():. PubMed ID: 34797650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar Electrodes for Next-Generation Rechargeable Batteries.
    Liu T; Yuan Y; Tao X; Lin Z; Lu J
    Adv Sci (Weinh); 2020 Sep; 7(17):2001207. PubMed ID: 32995126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine nanostructure design of metal chalcogenide conversion-based cathode materials for rechargeable magnesium batteries.
    Miao W; Peng H; Cui S; Zeng J; Ma G; Zhu L; Lei Z; Xu Y
    iScience; 2024 Jun; 27(6):109811. PubMed ID: 38799585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intimately mixed copper, cobalt, and iron fluorides resulting from the insertion of fluorine into a LDH template.
    Rouag A; Porhiel R; Lemoine K; Leroux F; Grenèche JM; Delbègue D; Iojoiu C; Guérin K
    Dalton Trans; 2024 Apr; 53(17):7628-7640. PubMed ID: 38619572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen vacancy chemistry in oxide cathodes.
    Zhang YH; Zhang S; Hu N; Liu Y; Ma J; Han P; Hu Z; Wang X; Cui G
    Chem Soc Rev; 2024 Apr; 53(7):3302-3326. PubMed ID: 38354058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating concerted cations with oxygen redox in rechargeable batteries.
    Wang S; Wang L; Sandoval D; Liu T; Zhan C; Amine K
    Chem Soc Rev; 2024 Apr; 53(7):3561-3578. PubMed ID: 38415295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Radical Intermediates in Rechargeable Organic Batteries.
    Gu S; Chen J; Hussain I; Wang Z; Chen X; Ahmad M; Feng SP; Lu Z; Zhang K
    Adv Mater; 2024 Apr; 36(17):e2306491. PubMed ID: 37533193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.