These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36564403)

  • 1. Optical gain reduction caused by nonrelevant subbands in narrow-period terahertz quantum cascade laser designs.
    Wang L; Lin TT; Wang K; Hirayama H
    Sci Rep; 2022 Dec; 12(1):22228. PubMed ID: 36564403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonrelevant quantum levels effecting on the current in 2-well terahertz quantum cascade lasers.
    Wang L; Lin TT; Wang K; Hirayama H
    Sci Rep; 2022 Oct; 12(1):17378. PubMed ID: 36253405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leakages suppression by isolating the desired quantum levels for high-temperature terahertz quantum cascade lasers.
    Wang L; Lin TT; Chen M; Wang K; Hirayama H
    Sci Rep; 2021 Dec; 11(1):23634. PubMed ID: 34880270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M-plane GaN terahertz quantum cascade laser structure design and doping effect for resonant-phonon and phonon-scattering-injection schemes.
    Ye F; Wang Y; Wang L; Lin TT; Zeng F; Ji Y; Zhang J; Liu F; Hirayama H; Wang K; Shi Y; Zheng Y; Zhang R
    Sci Rep; 2023 Jul; 13(1):11394. PubMed ID: 37452198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-period scattering-assisted terahertz quantum cascade lasers operating at high temperatures.
    Wang L; Lin TT; Wang K; Grange T; Birner S; Hirayama H
    Sci Rep; 2019 Jul; 9(1):9446. PubMed ID: 31263207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the effect of doping concentration in split-well resonant-phonon terahertz quantum cascade lasers.
    Levy S; Gower NL; Piperno S; Addamane SJ; Reno JL; Albo A
    Opt Express; 2024 Mar; 32(7):12040-12053. PubMed ID: 38571038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz Quantum Cascade Lasers.
    Cheng J; Quach P; Wang D; Liu F; Liu S; Yang L; Liu H; Shen B; Tong Y; Wang X
    Nanoscale Res Lett; 2019 Jun; 14(1):206. PubMed ID: 31209591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Magnetic-field-induced nonthermal occupation of higher subbands in a three-barrier tunneling structure].
    An L; Tang Y; Zhang JD; Ji Y; Tan PH; Yang FH; Zheng HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):470-3. PubMed ID: 12953516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction-Dominated Temperature Degradation of Population Inversion in Terahertz Quantum Cascade Lasers.
    Wu Y; Zhang J; Zhao Y; Liang C; Liu F; Shi Y; Che R
    Small; 2022 Aug; 18(34):e2106943. PubMed ID: 35908810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersubband lasers based on the subband dispersion of inverted mass.
    Sun G; Lu Y; Khurgin J
    Opt Express; 1998 Feb; 2(4):143-50. PubMed ID: 19377593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method.
    Ushakov D; Afonenko A; Khabibullin R; Ponomarev D; Aleshkin V; Morozov S; Dubinov A
    Opt Express; 2020 Aug; 28(17):25371-25382. PubMed ID: 32907059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic temperatures of terahertz quantum cascade active regions with phonon scattering assisted injection and extraction scheme.
    Patimisco P; Scamarcio G; Santacroce MV; Spagnolo V; Vitiello MS; Dupont E; Laframboise SR; Fathololoumi S; Razavipour GS; Wasilewski Z
    Opt Express; 2013 Apr; 21(8):10172-81. PubMed ID: 23609722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design strategy for terahertz quantum dot cascade lasers.
    Burnett BA; Williams BS
    Opt Express; 2016 Oct; 24(22):25471-25481. PubMed ID: 27828485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
    Wan WJ; Li H; Zhou T; Cao JC
    Sci Rep; 2017 Mar; 7():44109. PubMed ID: 28272492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gain and losses in THz quantum cascade laser with metal-metal waveguide.
    Martl M; Darmo J; Deutsch C; Brandstetter M; Andrews AM; Klang P; Strasser G; Unterrainer K
    Opt Express; 2011 Jan; 19(2):733-8. PubMed ID: 21263613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Split-well resonant-phonon terahertz quantum cascade laser.
    Levy S; Lander Gower N; Piperno S; Addamane SJ; Reno JL; Albo A
    Opt Express; 2023 Jul; 31(14):22274-22283. PubMed ID: 37475342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz emission from quantum cascade lasers in the quantum Hall regime: evidence for many body resonances and localization effects.
    Scalari G; Blaser S; Faist J; Beere H; Linfield E; Ritchie D; Davies G
    Phys Rev Lett; 2004 Dec; 93(23):237403. PubMed ID: 15601202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Tunneling between Quantized Subbands in van der Waals Double Quantum Well Structure Based on Few-Layer WSe
    Kinoshita K; Moriya R; Okazaki S; Zhang Y; Masubuchi S; Watanabe K; Taniguchi T; Sasagawa T; Machida T
    Nano Lett; 2022 Jun; 22(12):4640-4645. PubMed ID: 35658492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers.
    Jirauschek C
    Opt Express; 2010 Dec; 18(25):25922-7. PubMed ID: 21164938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual resonance phonon-photon-phonon terahertz quantum-cascade laser: physics of the electron transport and temperature performance optimization.
    Demić A; Ikonić Z; Dean P; Indjin D
    Opt Express; 2020 Dec; 28(26):38788-38812. PubMed ID: 33379440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.