BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36564412)

  • 1. Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks.
    Kong L; Ji Z; Xin HL
    Sci Rep; 2022 Dec; 12(1):22183. PubMed ID: 36564412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2,3 edges without reference and calibration.
    Ji Z; Hu M; Xin HL
    Sci Rep; 2023 Aug; 13(1):14132. PubMed ID: 37644034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of low phosphorus contents in neurofilaments of squid axons by Image-EELS contrast spectroscopy.
    Door R; Richter K; Martin R
    J Microsc; 1997 Nov; 188(Pt 2):173-81. PubMed ID: 10627190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy.
    Annys A; Jannis D; Verbeeck J
    Sci Rep; 2023 Aug; 13(1):13724. PubMed ID: 37608067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM.
    Li A; Yi S
    Comput Intell Neurosci; 2022; 2022():1669569. PubMed ID: 35535200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion.
    Li J; Liang W; Yin X; Li J; Guan W
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based ultra-fast identification of Raman spectra with low signal-to-noise ratio.
    Liu K; Chen F; Shang L; Wang Y; Peng H; Liu B; Li B
    J Biophotonics; 2024 Jan; 17(1):e202300270. PubMed ID: 37651642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping Chemical Bonds in Semiconductor Devices by Monitoring the Shifts of EELS Edges.
    Potapov P; Svistunova EL; Gulyaev AA
    Microsc Microanal; 2017 Oct; 23(5):926-931. PubMed ID: 28849753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated background subtraction technique for electron energy-loss spectroscopy and application to semiconductor heterostructures.
    Angadi VC; Abhayaratne C; Walther T
    J Microsc; 2016 May; 262(2):157-66. PubMed ID: 26998582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Approach to Enable Spectral Imaging Analysis for Particularly Complex Nanomaterial Systems.
    Jia H; Wang C; Wang C; Clancy P
    ACS Nano; 2023 Jan; 17(1):453-460. PubMed ID: 36537569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings.
    Alkhodari M; Fraiwan L
    Comput Methods Programs Biomed; 2021 Mar; 200():105940. PubMed ID: 33494031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics.
    Wenzel M; Milletari F; Krüger J; Lange C; Schenk M; Apostolova I; Klutmann S; Ehrenburg M; Buchert R
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2800-2811. PubMed ID: 31473800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Modulation Recognition Based on a DCN-BiLSTM Network.
    Liu K; Gao W; Huang Q
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of using Si L-edge for O/Si and N/Si quantitative ratio analysis by electron energy loss spectroscopy (EELS).
    Wang YY; Chan SF; Jin Q; Zhuang K; Choi JK
    Micron; 2021 Jul; 146():103065. PubMed ID: 33940344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.