These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36564449)

  • 1. Creep modeling of composite materials based on improved gene expression programming.
    Tan H; Yan S; Zhu S; Wen P
    Sci Rep; 2022 Dec; 12(1):22244. PubMed ID: 36564449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of Creep Behavior of Particulate Composites with Focus on Interfacial Adhesion Effect.
    Rech J; Ramakers-van Dorp E; Möginger B; Hausnerova B
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended creep behavior of dental composites using time-temperature superposition principle.
    Vaidyanathan TK; Vaidyanathan J; Cherian Z
    Dent Mater; 2003 Jan; 19(1):46-53. PubMed ID: 12498896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of creep behavior of ultra-high-molecular-weight polyethylene systems.
    Deng M; Latour RA; Ogale AA; Shalaby SW
    J Biomed Mater Res; 1998 May; 40(2):214-23. PubMed ID: 9549616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Temperature-Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy.
    Krauklis AE; Akulichev AG; Gagani AI; Echtermeyer AT
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The creep model based on nonlinear Newton body under different temperature conditions.
    Zhang L; Wei X; Zhang Y
    Sci Rep; 2023 Mar; 13(1):4822. PubMed ID: 36964243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method for Predicting the Creep Rupture Life of Small-Sample Materials Based on Parametric Models and Machine Learning Models.
    Zhang X; Yao J; Wu Y; Liu X; Wang C; Liu H
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Phenomenological Primary-Secondary-Tertiary Creep Model for Polymer-Bonded Composite Materials.
    Duan X; Yuan H; Tang W; He J; Guan X
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials.
    Amiri A; Yu A; Webster D; Ulven C
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization.
    Motta Dias MH; Jansen KMB; Luinge JW; Bersee HEN; Benedictus R
    Mech Time Depend Mater; 2016; 20(2):245-262. PubMed ID: 30197569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep, recovery, and stress relaxation behavior of nanostructured bioactive calcium phosphate glass-POSS/polymer composites for bone implants studied under simulated physiological conditions.
    Belyamani I; Kim K; Rahimi SK; Sahukhal GS; Elasri MO; Otaigbe JU
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2419-2432. PubMed ID: 30835946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bulk compressive creep and recovery behavior of human dentine and resin-based dental materials.
    Wang X; Zhou J; Kang D; Swain MV; Menčík J; Jian Y; Zhao K
    Dent Mater; 2020 Mar; 36(3):366-376. PubMed ID: 31983468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.
    Li M; Li D; Wang LJ; Adhikari B
    Carbohydr Polym; 2015 Mar; 117():957-963. PubMed ID: 25498722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Burgers creep damage model of frozen silty clay based on fuzzy random particle swarm algorithm.
    Yao Y; Cheng H; Lin J; Ji J
    Sci Rep; 2021 Sep; 11(1):18974. PubMed ID: 34556741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical creep of tea leaves.
    Lee YT; Jhao YS; Chiang D; Lee S
    J Sci Food Agric; 2021 Feb; 101(3):1111-1118. PubMed ID: 32785954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scott Blair Fractional-Type Viscoelastic Behavior of Thermoplastic Polyurethane.
    Pichler C; Oberparleiter S; Lackner R
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive creep and recovery of light-cured packable composite resins.
    Marghalani HY; Al-Jabab AS
    Dent Mater; 2004 Jul; 20(6):600-10. PubMed ID: 15134949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic stability of resin-composites aged in food-simulating solvents.
    Marghalani HY; Watts DC
    Dent Mater; 2013 Sep; 29(9):963-70. PubMed ID: 23910977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the long-term creep behaviour of hydroxyapatite-filled polyethylmethacrylate bone cements.
    Arnold JC; Venditti NP
    J Mater Sci Mater Med; 2007 Sep; 18(9):1849-58. PubMed ID: 17492254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.