These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36564449)

  • 21. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model.
    Mei S; Li X; Wang X; Liu X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creep Life Prediction of 10CrMo9-10 Steel by Larson-Miller Model.
    Guštin AZ; Žužek B; Podgornik B
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al-12Si).
    Ji Y; Yuan Y; Zhang W; Xu Y; Liu Y
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses.
    Asyraf MRM; Ishak MR; Sapuan SM; Yidris N
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoindentation creep versus bulk compressive creep of dental resin-composites.
    El-Safty S; Silikas N; Akhtar R; Watts DC
    Dent Mater; 2012 Nov; 28(11):1171-82. PubMed ID: 22999374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical aging and the creep behavior of acrylic bone cements.
    Kuzmychov O; Koplin C; Jaeger R; Büchner H; Gopp U
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):910-917. PubMed ID: 19630059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.
    Yang TC; Chien YC; Wu TL; Hung KC; Wu JH
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creep damage model of rock with varying-parameter under the step loading and unloading conditions.
    Li G; Wang Y; Wang D; Yang X; Wang L; Li Y; Zhang S
    Sci Rep; 2021 Dec; 11(1):24057. PubMed ID: 34911994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methodology improvement of bulk compressive creep test: Deformation measurement and loading rate.
    He Y; Chen C; Yan Y; Swain MV; Li Q; Jian Y; Zhao K; Wang X
    Dent Mater; 2022 Oct; 38(10):1575-1586. PubMed ID: 35934560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Approach to Describe the Time-Temperature Conversion among Relaxation Curves of Viscoelastic Materials.
    Álvarez-Vázquez A; Fernández-Canteli A; Castillo E; Pelayo F; Muñiz-Calvente M; Lamela MJ
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic Damage Characteristics of Asphalt Mixtures Using Fractional Rheology.
    Zhang Q; Gu X; Yu Z; Liang J; Dong Q
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental data for creep and dynamic mechanical properties of polycarbonate and polycarbonate/acrylonitrile-butadiene-styrene.
    Mu Q
    Data Brief; 2022 Jun; 42():108264. PubMed ID: 35607422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Viscoelastic Poisson's Ratio of Engineering Elastomers via DIC-Based Creep Testing.
    Sotomayor-Del-Moral JA; Pascual-Francisco JB; Susarrey-Huerta O; Resendiz-Calderon CD; Gallardo-Hernández EA; Farfan-Cabrera LI
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems.
    Leng D; Xu K; Qin L; Ma Y; Liu G
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-dependence of creep behaviour of dental resin-composites.
    El-Safty S; Silikas N; Watts DC
    J Dent; 2013 Apr; 41(4):287-96. PubMed ID: 23207518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Combined Exponential-Power-Law Method for Interconversion between Viscoelastic Functions of Polymers and Polymer-Based Materials.
    Dacol V; Caetano E; Correia JR
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33339250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.
    Shi AM; Wang LJ; Li D; Adhikari B
    Carbohydr Polym; 2013 Jul; 96(2):602-10. PubMed ID: 23768606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the expression of the rate constant
    Hiraguchi H
    Heliyon; 2019 Oct; 5(10):e02618. PubMed ID: 31692612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.