These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36564515)

  • 41. View-Aware Geometry-Structure Joint Learning for Single-View 3D Shape Reconstruction.
    Zhang X; Ma R; Zou C; Zhang M; Zhao X; Gao Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6546-6561. PubMed ID: 34156936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compressive multiple view projection incoherent holography.
    Rivenson Y; Stern A; Rosen J
    Opt Express; 2011 Mar; 19(7):6109-18. PubMed ID: 21451634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization-based image reconstruction from sparsely sampled data in electron paramagnetic resonance imaging.
    Qiao Z; Zhang Z; Pan X; Epel B; Redler G; Xia D; Halpern H
    J Magn Reson; 2018 Sep; 294():24-34. PubMed ID: 30005191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compression and reconstruction of sorted PET listmode data.
    Vandenberghe S; Staelens S; Van de Walle R; Dierckx R; Lemahieu I
    Nucl Med Commun; 2005 Sep; 26(9):819-25. PubMed ID: 16096586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stationary computed tomography with source and detector in linear symmetric geometry: Direct filtered backprojection reconstruction.
    Zhang T; Xing Y; Zhang L; Jin X; Gao H; Chen Z
    Med Phys; 2020 Jun; 47(5):2222-2236. PubMed ID: 32009236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
    Yang G; Yu S; Dong H; Slabaugh G; Dragotti PL; Ye X; Liu F; Arridge S; Keegan J; Guo Y; Firmin D; Keegan J; Slabaugh G; Arridge S; Ye X; Guo Y; Yu S; Liu F; Firmin D; Dragotti PL; Yang G; Dong H
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1310-1321. PubMed ID: 29870361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding and controlling the effect of lossy raw data compression on CT images.
    Wang AS; Pelc NJ
    Med Phys; 2009 Aug; 36(8):3643-53. PubMed ID: 19746798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy.
    Weng J; Zhong J; Hu C
    Opt Express; 2008 Dec; 16(26):21971-81. PubMed ID: 19104632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light Field Image Super-Resolution Using Deep Residual Networks on Lenslet Images.
    Salem A; Ibrahem H; Kang HS
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wavelet-based joint CT-MRI reconstruction.
    Cui X; Mili L; Wang G; Yu H
    J Xray Sci Technol; 2018; 26(3):379-393. PubMed ID: 29562574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressed sensing MRI reconstruction from 3D multichannel data using GPUs.
    Chang CH; Yu X; Ji JX
    Magn Reson Med; 2017 Dec; 78(6):2265-2274. PubMed ID: 28198568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution.
    Yeung HWF; Hou J; Chen X; Chen J; Chen Z; Chung YY
    IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30530364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LRT: An Efficient Low-Light Restoration Transformer for Dark Light Field Images.
    Zhang S; Meng N; Lam EY
    IEEE Trans Image Process; 2023; 32():4314-4326. PubMed ID: 37490378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BX2S-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images.
    Chen Z; Guo L; Zhang R; Fang Z; He X; Wang J
    Comput Biol Med; 2023 Mar; 154():106615. PubMed ID: 36739821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.
    Wu X; He B; Gao P; Zhang P; Shang Y; Zhang L; Zhong J; Jiang J; Hui H; Tian J
    Med Phys; 2023 Apr; 50(4):2354-2371. PubMed ID: 36239207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developments towards the slice-wise three-dimensional reconstruction of the distribution of the contrast perfusion in the myocardial muscle from biplane angiographic views.
    Dumay AC; Zijdenbos AP; Pinto IM; Gerbrands JJ; Roos C; Serruys PW; Reiber JH
    Int J Card Imaging; 1990; 5(2-3):213-24. PubMed ID: 2230298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An efficient content-adaptive motion-compensated 3-D DWT with enhanced spatial and temporal scalability.
    Mehrseresht N; Taubman D
    IEEE Trans Image Process; 2006 Jun; 15(6):1397-412. PubMed ID: 16764266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.