BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36564705)

  • 1. GCNCPR-ACPs: a novel graph convolution network method for ACPs prediction.
    Wu X; Zeng W; Lin F
    BMC Bioinformatics; 2022 Dec; 23(Suppl 4):560. PubMed ID: 36564705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Membrane Protein Amphiphilic Helix Based on Horizontal Visibility Graph and Graph Convolution Network.
    Jia B; Meng Q; Chen Y; Yang H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3567-3574. PubMed ID: 37581969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion.
    Cao R; Wang M; Bin Y; Zheng C
    PeerJ; 2021; 9():e11906. PubMed ID: 34414035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method.
    Charoenkwan P; Chiangjong W; Lee VS; Nantasenamat C; Hasan MM; Shoombuatong W
    Sci Rep; 2021 Feb; 11(1):3017. PubMed ID: 33542286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-Based Drug Predictions for Cancer Therapy Using Deep Learning.
    Sun YY; Lin TT; Cheng WC; Lu IH; Lin CY; Chen SH
    Pharmaceuticals (Basel); 2022 Mar; 15(4):. PubMed ID: 35455418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.
    Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning.
    Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L
    Front Genet; 2021; 12():657182. PubMed ID: 34054920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACP-ML: A sequence-based method for anticancer peptide prediction.
    Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D
    Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research of Software Defect Prediction Model Based on Complex Network and Graph Neural Network.
    Cui M; Long S; Jiang Y; Na X
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep graph convolutional neural network architecture for graph classification.
    Zhou Y; Huo H; Hou Z; Bu F
    PLoS One; 2023; 18(3):e0279604. PubMed ID: 36897837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-Embedding of Nodes and Edges With Graph Neural Networks.
    Jiang X; Zhu R; Ji P; Li S
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7075-7086. PubMed ID: 33052851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Prediction of Interaction Sites on the Protein and Peptide Sides of Complexes through Multilayer Graph Convolutional Networks.
    Li K; Quan L; Jiang Y; Wu H; Wu J; Li Y; Zhou Y; Wu T; Lyu Q
    J Chem Inf Model; 2023 Apr; 63(7):2251-2262. PubMed ID: 36989086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.