These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36564705)
1. GCNCPR-ACPs: a novel graph convolution network method for ACPs prediction. Wu X; Zeng W; Lin F BMC Bioinformatics; 2022 Dec; 23(Suppl 4):560. PubMed ID: 36564705 [TBL] [Abstract][Full Text] [Related]
2. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations. Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191 [TBL] [Abstract][Full Text] [Related]
3. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585 [TBL] [Abstract][Full Text] [Related]
4. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Yang R; Fu Y; Zhang Q; Zhang L Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169 [TBL] [Abstract][Full Text] [Related]
5. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation. Chen XG; Zhang W; Yang X; Li C; Chen H Front Genet; 2021; 12():698477. PubMed ID: 34276801 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Membrane Protein Amphiphilic Helix Based on Horizontal Visibility Graph and Graph Convolution Network. Jia B; Meng Q; Chen Y; Yang H IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3567-3574. PubMed ID: 37581969 [TBL] [Abstract][Full Text] [Related]
7. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. Cao R; Wang M; Bin Y; Zheng C PeerJ; 2021; 9():e11906. PubMed ID: 34414035 [TBL] [Abstract][Full Text] [Related]
8. Locality preserving dense graph convolutional networks with graph context-aware node representations. Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289 [TBL] [Abstract][Full Text] [Related]
9. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides. Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753 [TBL] [Abstract][Full Text] [Related]
10. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Charoenkwan P; Chiangjong W; Lee VS; Nantasenamat C; Hasan MM; Shoombuatong W Sci Rep; 2021 Feb; 11(1):3017. PubMed ID: 33542286 [TBL] [Abstract][Full Text] [Related]
11. Peptide-Based Drug Predictions for Cancer Therapy Using Deep Learning. Sun YY; Lin TT; Cheng WC; Lu IH; Lin CY; Chen SH Pharmaceuticals (Basel); 2022 Mar; 15(4):. PubMed ID: 35455418 [TBL] [Abstract][Full Text] [Related]
12. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning. Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420 [TBL] [Abstract][Full Text] [Related]
13. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning. Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L Front Genet; 2021; 12():657182. PubMed ID: 34054920 [TBL] [Abstract][Full Text] [Related]
14. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410 [TBL] [Abstract][Full Text] [Related]
15. ACP-ML: A sequence-based method for anticancer peptide prediction. Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519 [TBL] [Abstract][Full Text] [Related]
16. Research of Software Defect Prediction Model Based on Complex Network and Graph Neural Network. Cui M; Long S; Jiang Y; Na X Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420393 [TBL] [Abstract][Full Text] [Related]
17. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation. Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345 [TBL] [Abstract][Full Text] [Related]
18. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer. Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672 [TBL] [Abstract][Full Text] [Related]
19. Co-Embedding of Nodes and Edges With Graph Neural Networks. Jiang X; Zhu R; Ji P; Li S IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7075-7086. PubMed ID: 33052851 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous Prediction of Interaction Sites on the Protein and Peptide Sides of Complexes through Multilayer Graph Convolutional Networks. Li K; Quan L; Jiang Y; Wu H; Wu J; Li Y; Zhou Y; Wu T; Lyu Q J Chem Inf Model; 2023 Apr; 63(7):2251-2262. PubMed ID: 36989086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]