These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 36564710)
1. Machine learning-based techniques to improve lung transplantation outcomes and complications: a systematic review. Gholamzadeh M; Abtahi H; Safdari R BMC Med Res Methodol; 2022 Dec; 22(1):331. PubMed ID: 36564710 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models. Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443 [TBL] [Abstract][Full Text] [Related]
4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
5. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
6. Machine learning model-based risk prediction of severe complications after off-pump coronary artery bypass grafting. Zhang Y; Li L; Li Y; Zeng Z Adv Clin Exp Med; 2023 Feb; 32(2):185-194. PubMed ID: 36226692 [TBL] [Abstract][Full Text] [Related]
7. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
8. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448 [No Abstract] [Full Text] [Related]
10. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
11. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia. Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144 [TBL] [Abstract][Full Text] [Related]
12. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591 [TBL] [Abstract][Full Text] [Related]
13. Prediction of lung metastases in thyroid cancer using machine learning based on SEER database. Liu W; Wang S; Ye Z; Xu P; Xia X; Guo M Cancer Med; 2022 Jun; 11(12):2503-2515. PubMed ID: 35191613 [TBL] [Abstract][Full Text] [Related]
14. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
15. Reliable prediction of difficult airway for tracheal intubation from patient preoperative photographs by machine learning methods. García-García F; Lee DJ; Mendoza-Garcés FJ; García-Gutiérrez S Comput Methods Programs Biomed; 2024 May; 248():108118. PubMed ID: 38489935 [TBL] [Abstract][Full Text] [Related]
16. Application of machine learning in predicting hospital readmissions: a scoping review of the literature. Huang Y; Talwar A; Chatterjee S; Aparasu RR BMC Med Res Methodol; 2021 May; 21(1):96. PubMed ID: 33952192 [TBL] [Abstract][Full Text] [Related]
17. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
18. A machine learning-based approach to prognostic analysis of thoracic transplantations. Delen D; Oztekin A; Kong ZJ Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956 [TBL] [Abstract][Full Text] [Related]
19. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152 [TBL] [Abstract][Full Text] [Related]
20. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture. Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]