These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36564857)

  • 41. Protein sequence design by conformational landscape optimization.
    Norn C; Wicky BIM; Juergens D; Liu S; Kim D; Tischer D; Koepnick B; Anishchenko I; ; Baker D; Ovchinnikov S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-distance dependency combined multi-hop graph neural networks for protein-protein interactions prediction.
    Zhong W; He C; Xiao C; Liu Y; Qin X; Yu Z
    BMC Bioinformatics; 2022 Dec; 23(1):521. PubMed ID: 36471248
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Struct2GO: protein function prediction based on graph pooling algorithm and AlphaFold2 structure information.
    Jiao P; Wang B; Wang X; Liu B; Wang Y; Li J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37847755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction.
    Faraggi E; Yang Y; Zhang S; Zhou Y
    Structure; 2009 Nov; 17(11):1515-27. PubMed ID: 19913486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate prediction of protein torsion angles using evolutionary signatures and recurrent neural network.
    Xu YC; ShangGuan TJ; Ding XM; Cheung NJ
    Sci Rep; 2021 Oct; 11(1):21033. PubMed ID: 34702851
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
    Smith CA; Kortemme T
    PLoS One; 2011; 6(7):e20451. PubMed ID: 21789164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclic peptide structure prediction and design using AlphaFold.
    Rettie SA; Campbell KV; Bera AK; Kang A; Kozlov S; De La Cruz J; Adebomi V; Zhou G; DiMaio F; Ovchinnikov S; Bhardwaj G
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recapitulation of protein family divergence using flexible backbone protein design.
    Saunders CT; Baker D
    J Mol Biol; 2005 Feb; 346(2):631-44. PubMed ID: 15670610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.
    Davey JA; Chica RA
    Proteins; 2014 May; 82(5):771-84. PubMed ID: 24174277
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GCRNN: graph convolutional recurrent neural network for compound-protein interaction prediction.
    Elbasani E; Njimbouom SN; Oh TJ; Kim EH; Lee H; Kim JD
    BMC Bioinformatics; 2022 Jan; 22(Suppl 5):616. PubMed ID: 35016607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ProteInfer, deep neural networks for protein functional inference.
    Sanderson T; Bileschi ML; Belanger D; Colwell LJ
    Elife; 2023 Feb; 12():. PubMed ID: 36847334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling backbone flexibility to achieve sequence diversity: the design of novel alpha-helical ligands for Bcl-xL.
    Fu X; Apgar JR; Keating AE
    J Mol Biol; 2007 Aug; 371(4):1099-117. PubMed ID: 17597151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De novo protein design by deep network hallucination.
    Anishchenko I; Pellock SJ; Chidyausiku TM; Ramelot TA; Ovchinnikov S; Hao J; Bafna K; Norn C; Kang A; Bera AK; DiMaio F; Carter L; Chow CM; Montelione GT; Baker D
    Nature; 2021 Dec; 600(7889):547-552. PubMed ID: 34853475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Data driven flexible backbone protein design.
    Sun MGF; Kim PM
    PLoS Comput Biol; 2017 Aug; 13(8):e1005722. PubMed ID: 28837553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale predicting protein functions through heterogeneous feature fusion.
    Zheng R; Huang Z; Deng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37401369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks.
    Andrabi M; Mizuguchi K; Sarai A; Ahmad S
    BMC Struct Biol; 2009 May; 9():30. PubMed ID: 19439068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. De novo design of cavity-containing proteins with a backbone-centered neural network energy function.
    Xu Y; Hu X; Wang C; Liu Y; Chen Q; Liu H
    Structure; 2024 Apr; 32(4):424-432.e4. PubMed ID: 38325370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks.
    Castorina LV; Ünal SM; Subr K; Wood CW
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38288671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.