These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36565174)
1. A polar insect's tale: Observations on the life cycle of Parochlus steinenii, the only winged midge native to Antarctica. Contador Mejias T; Gañan M; Rendoll-Cárcamo J; Maturana CS; Benítez HA; Kennedy J; Rozzi R; Convey P Ecology; 2023 Mar; 104(3):e3964. PubMed ID: 36565174 [No Abstract] [Full Text] [Related]
2. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. Kim S; Oh M; Jung W; Park J; Choi HG; Shin SC Gigascience; 2017 Mar; 6(3):1-8. PubMed ID: 28327954 [TBL] [Abstract][Full Text] [Related]
3. Complete mitochondrial genome of the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Kim S; Kim H; Shin SC Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3475-6. PubMed ID: 26642812 [TBL] [Abstract][Full Text] [Related]
4. Gene family expansions in Antarctic winged midge as a strategy for adaptation to cold environments. Kim H; Kim HW; Lee JH; Park J; Lee H; Kim S; Shin SC Sci Rep; 2022 Oct; 12(1):18263. PubMed ID: 36309574 [TBL] [Abstract][Full Text] [Related]
5. Records of Gañan M; Contador T; Rendoll J; Simoes F; Carolina Pérez ; Graham G; Castillo S; Kennedy J; Convey P Zookeys; 2021; 1011():63-71. PubMed ID: 33551650 [TBL] [Abstract][Full Text] [Related]
6. Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. Kozeretska I; Serga S; Kovalenko P; Gorobchyshyn V; Convey P Insect Sci; 2022 Feb; 29(1):2-20. PubMed ID: 33913258 [TBL] [Abstract][Full Text] [Related]
7. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628 [TBL] [Abstract][Full Text] [Related]
8. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Contador T; Gañan M; Bizama G; Fuentes-Jaque G; Morales L; Rendoll J; Simoes F; Kennedy J; Rozzi R; Convey P Sci Rep; 2020 Jun; 10(1):9087. PubMed ID: 32493944 [TBL] [Abstract][Full Text] [Related]
9. Life cycle and phenology of an Antarctic invader: the flightless chironomid midge, Bartlett JC; Convey P; Hayward SAL Polar Biol; 2019; 42(1):115-130. PubMed ID: 30872890 [TBL] [Abstract][Full Text] [Related]
10. Continuous activity and no cycling of clock genes in the Antarctic midge during the polar summer. Kobelkova A; Goto SG; Peyton JT; Ikeno T; Lee RE; Denlinger DL J Insect Physiol; 2015 Oct; 81():90-6. PubMed ID: 26172960 [TBL] [Abstract][Full Text] [Related]
11. Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica. Yoshida M; Lee RE; Denlinger DL; Goto SG Comp Biochem Physiol A Mol Integr Physiol; 2021 Jun; 256():110928. PubMed ID: 33647463 [TBL] [Abstract][Full Text] [Related]
12. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Rinehart JP; Hayward SA; Elnitsky MA; Sandro LH; Lee RE; Denlinger DL Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14223-7. PubMed ID: 16968769 [TBL] [Abstract][Full Text] [Related]
13. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival. Goto SG; Lee RE; Denlinger DL Biol Bull; 2015 Aug; 229(1):47-57. PubMed ID: 26338869 [TBL] [Abstract][Full Text] [Related]
14. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Kelley JL; Peyton JT; Fiston-Lavier AS; Teets NM; Yee MC; Johnston JS; Bustamante CD; Lee RE; Denlinger DL Nat Commun; 2014 Aug; 5():4611. PubMed ID: 25118180 [TBL] [Abstract][Full Text] [Related]
15. Larval morphology of Belgica antarctica Jacobs, 1900 (Diptera, Chironomidae, Orthocladiinae) from central part of the maritime Antarctic and deformities found in the larvae. Ihtimanska MK; Kovalenko PA; Michailova PV; Parnikoza IY Zootaxa; 2023 Jun; 5311(3):405-416. PubMed ID: 37518636 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. Benoit JB; Lopez-Martinez G; Michaud MR; Elnitsky MA; Lee RE; Denlinger DL J Insect Physiol; 2007 Jul; 53(7):656-67. PubMed ID: 17543329 [TBL] [Abstract][Full Text] [Related]
17. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Spacht DE; Gantz JD; Devlin JJ; McCabe EA; Lee RE; Denlinger DL; Teets NM Oecologia; 2021 Oct; 197(2):373-385. PubMed ID: 34596750 [TBL] [Abstract][Full Text] [Related]
18. Acute and chronic life cycle toxicity of acenaphthene and 2,4,6-trichlorophenol to the midge Paratanytarsus parthenogeneticus (Diptera: Chironomidae). Meier PG; Choi K; Sweet LI Aquat Toxicol; 2000 Nov; 51(1):31-44. PubMed ID: 10998497 [TBL] [Abstract][Full Text] [Related]
19. Rapid stress hardening in the Antarctic midge improves male fertility by increasing courtship success and preventing decline of accessory gland proteins following cold exposure. Ajayi OM; Gantz JD; Finch G; Lee RE; Denlinger DL; Benoit JB J Exp Biol; 2021 Jul; 224(14):. PubMed ID: 34297110 [TBL] [Abstract][Full Text] [Related]
20. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration. Elnitsky MA; Benoit JB; Lopez-Martinez G; Denlinger DL; Lee RE J Exp Biol; 2009 Sep; 212(17):2864-71. PubMed ID: 19684222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]