BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36565196)

  • 1. Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure.
    Kostyunin AE; Glushkova TV; Lobov AA; Ovcharenko EA; Zainullina BR; Bogdanov LA; Shishkova DK; Markova VE; Asanov MA; Mukhamadiyarov RA; Velikanova EA; Akentyeva TN; Rezvova MA; Stasev AN; Evtushenko AV; Barbarash LS; Kutikhin AG
    J Am Heart Assoc; 2023 Jan; 12(1):e028215. PubMed ID: 36565196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Screening analysis of proteolytic enzymes and their inhibitors in the leaflets of epoxy-treated bioprosthetic heart valves explanted due to dysfunction].
    Kostyunin AE; Glushkova TV; Shishkova DK; Markova VE; Ovcharenko EA
    Biomed Khim; 2022 Jan; 68(1):68-75. PubMed ID: 35221298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential.
    Yu T; Zheng C; Chen X; Pu H; Li G; Jiang Q; Wang Y; Guo Y
    Acta Biomater; 2023 Apr; 160():87-97. PubMed ID: 36812953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneration of Bioprosthetic Heart Valves: Update 2020.
    Kostyunin AE; Yuzhalin AE; Rezvova MA; Ovcharenko EA; Glushkova TV; Kutikhin AG
    J Am Heart Assoc; 2020 Oct; 9(19):e018506. PubMed ID: 32954917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties.
    Yu T; Pu H; Chen X; Kong Q; Chen C; Li G; Jiang Q; Wang Y
    Acta Biomater; 2023 Apr; 160():45-58. PubMed ID: 36764592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response.
    Guo G; Jin L; Jin W; Chen L; Lei Y; Wang Y
    Acta Biomater; 2018 Dec; 82():44-55. PubMed ID: 30326277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedding and Backscattered Scanning Electron Microscopy (EM-BSEM) Is Preferential over Immunophenotyping in Relation to Bioprosthetic Heart Valves.
    Kostyunin A; Glushkova T; Velikanova E; Mukhamadiyarov R; Bogdanov L; Akentyeva T; Ovcharenko E; Evtushenko A; Shishkova D; Markova Y; Kutikhin A
    Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes.
    Xue Y; Kossar AP; Abramov A; Frasca A; Sun M; Zyablitskaya M; Paik D; Kalfa D; Della Barbera M; Thiene G; Kozaki S; Kawashima T; Gorman JH; Gorman RC; Gillespie MJ; Carreon CK; Sanders SP; Levy RJ; Ferrari G
    Cardiovasc Res; 2023 Mar; 119(1):302-315. PubMed ID: 35020813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration.
    Marro M; Kossar AP; Xue Y; Frasca A; Levy RJ; Ferrari G
    J Am Heart Assoc; 2021 Feb; 10(3):e018921. PubMed ID: 33494616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcification and Oxidative Modifications Are Associated With Progressive Bioprosthetic Heart Valve Dysfunction.
    Lee S; Levy RJ; Christian AJ; Hazen SL; Frick NE; Lai EK; Grau JB; Bavaria JE; Ferrari G
    J Am Heart Assoc; 2017 May; 6(5):. PubMed ID: 28483776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic proteoglycans as a tool to engineer the structure and mechanics of porcine bioprosthetic heart valves.
    Petrovic M; Kahle ER; Han L; Marcolongo MS
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35336. PubMed ID: 37818847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences.
    Kostyunin A; Mukhamadiyarov R; Glushkova T; Bogdanov L; Shishkova D; Osyaev N; Ovcharenko E; Kutikhin A
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical pathways of tissue degeneration in bioprosthetic cardiac valves. The role of matrix metalloproteinases.
    Simionescu A; Simionescu D; Deac R
    ASAIO J; 1996; 42(5):M561-7. PubMed ID: 8944942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could activated tissue remodeling be considered as early marker for progressive valve degeneration? Comparative analysis of checkpoint and ECM remodeling gene expression in native degenerating aortic valves and after bioprosthetic replacement.
    Yeghiazaryan K; Skowasch D; Bauriedel G; Schild H; Golubnitschaja O
    Amino Acids; 2007 Jan; 32(1):109-14. PubMed ID: 16874466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration.
    Senage T; Paul A; Le Tourneau T; Fellah-Hebia I; Vadori M; Bashir S; Galiñanes M; Bottio T; Gerosa G; Evangelista A; Badano LP; Nassi A; Costa C; Cesare G; Manji RA; Cueff de Monchy C; Piriou N; Capoulade R; Serfaty JM; Guimbretière G; Dantan E; Ruiz-Majoral A; Coste du Fou G; Leviatan Ben-Arye S; Govani L; Yehuda S; Bachar Abramovitch S; Amon R; Reuven EM; Atiya-Nasagi Y; Yu H; Iop L; Casós K; Kuguel SG; Blasco-Lucas A; Permanyer E; Sbraga F; Llatjós R; Moreno-Gonzalez G; Sánchez-Martínez M; Breimer ME; Holgersson J; Teneberg S; Pascual-Gilabert M; Nonell-Canals A; Takeuchi Y; Chen X; Mañez R; Roussel JC; Soulillou JP; Cozzi E; Padler-Karavani V
    Nat Med; 2022 Feb; 28(2):283-294. PubMed ID: 35177855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves.
    McGregor C; Byrne G; Rahmani B; Chisari E; Kyriakopoulou K; Burriesci G
    Acta Biomater; 2016 Sep; 41():204-209. PubMed ID: 27268480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification.
    Abramov A; Xue Y; Zakharchenko A; Kurade M; Soni RK; Levy RJ; Ferrari G
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2219054120. PubMed ID: 36574676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in functional modification and crosslinking of bioprosthetic heart valves.
    Zheng C; Yang L; Wang Y
    Regen Biomater; 2024; 11():rbad098. PubMed ID: 38173770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.