BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36565384)

  • 1. Whole-genome sequencing of biofilm-forming and chromium-resistant mangrove fungus Aspergillus niger BSC-1.
    Chatterjee S; Das S
    World J Microbiol Biotechnol; 2022 Dec; 39(2):55. PubMed ID: 36565384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-quality draft genome sequence of a biofilm forming lignocellulolytic
    Paul S; Ludeña Y; Villena GK; Yu F; Sherman DH; Gutiérrez-Correa M
    Stand Genomic Sci; 2017; 12():37. PubMed ID: 28725336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental stages of biofilm and characterization of extracellular matrix of manglicolous fungus Aspergillus niger BSC-1.
    Chatterjee S; Das S
    J Basic Microbiol; 2020 Mar; 60(3):231-242. PubMed ID: 31856361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light Signaling Regulates Aspergillus niger Biofilm Formation by Affecting Melanin and Extracellular Polysaccharide Biosynthesis.
    Sun W; Yu Y; Chen J; Yu B; Chen T; Ying H; Zhou S; Ouyang P; Liu D; Chen Y
    mBio; 2021 Feb; 12(1):. PubMed ID: 33593965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of F-actin and β-tubulin genes in free mycelia and robust biofilms of the filamentous fungus Aspergillus niger.
    Guimarães LHS; Rossi NMM; Bitencourt TA
    Braz J Microbiol; 2021 Dec; 52(4):2357-2362. PubMed ID: 34549373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delving into the lifestyle of Sundarban Wetland resident, biofilm producing, halotolerant Salinicoccus roseus: a comparative genomics-based intervention.
    Dutta B; Halder U; Chitikineni A; Varshney RK; Bandopadhyay R
    BMC Genomics; 2023 Nov; 24(1):681. PubMed ID: 37957573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1-2 locus of Aspergillus niger.
    Ellena V; Seekles SJ; Vignolle GA; Ram AFJ; Steiger MG
    BMC Genomics; 2021 Sep; 22(1):679. PubMed ID: 34548025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
    Semana P; Powlowski J
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption potency of Aspergillus niger for removal of chromium (VI).
    Srivastava S; Thakur IS
    Curr Microbiol; 2006 Sep; 53(3):232-7. PubMed ID: 16874547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics.
    Sun J; Lu X; Rinas U; Zeng AP
    Genome Biol; 2007; 8(9):R182. PubMed ID: 17784953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.
    Niu J; Arentshorst M; Nair PD; Dai Z; Baker SE; Frisvad JC; Nielsen KF; Punt PJ; Ram AF
    G3 (Bethesda); 2015 Nov; 6(1):193-204. PubMed ID: 26566947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism.
    Gruben BS; Zhou M; Wiebenga A; Ballering J; Overkamp KM; Punt PJ; de Vries RP
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5531-40. PubMed ID: 24682478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspergillus niger genomics: past, present and into the future.
    Baker SE
    Med Mycol; 2006 Sep; 44 Suppl 1():S17-21. PubMed ID: 17050415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.
    Sandana Mala JG; Unni Nair B; Puvanakrishnan R
    J Gen Appl Microbiol; 2006 Jun; 52(3):179-86. PubMed ID: 16960334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of functional groups on Aspergillus niger biomass in the detoxification of hexavalent chromium.
    Narvekar S; Vaidya VK
    J Environ Sci Eng; 2009 Oct; 51(4):233-8. PubMed ID: 21117413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.
    Brandl MT; Carter MQ; Parker CT; Chapman MR; Huynh S; Zhou Y
    PLoS One; 2011; 6(10):e25553. PubMed ID: 22003399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal bio-sorption potential of chromium in Norkrans liquid medium by shake flask technique.
    Igiehon NO; Babalola OO
    J Basic Microbiol; 2019 Jan; 59(1):62-73. PubMed ID: 30288769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin signaling pathway influences
    Liu L; Yu B; Sun W; Liang C; Ying H; Zhou S; Niu H; Wang Y; Liu D; Chen Y
    Biotechnol Biofuels; 2020; 13():54. PubMed ID: 32190119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger.
    Guillemette T; van Peij N; Goosen T; Lanthaler K; Robson GD; van den Hondel CA; Stam H; Archer DB
    BMC Genomics; 2007 Jun; 8():158. PubMed ID: 17561995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product.
    Gu Y; Xu W; Liu Y; Zeng G; Huang J; Tan X; Jian H; Hu X; Li F; Wang D
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6271-9. PubMed ID: 25408081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.