These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36565653)
1. Zwitterionic surfactant as an additive for efficient electrophoretic separation of easily absorbed rhodamine dyes on plastic microchips. Qian J; Li H; Wang Y; Li Y; Yu J; Zhou L; Pu Q J Chromatogr A; 2023 Jan; 1688():463716. PubMed ID: 36565653 [TBL] [Abstract][Full Text] [Related]
2. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes. Wei X; Sun P; Yang S; Zhao L; Wu J; Li F; Pu Q J Chromatogr A; 2016 Jul; 1457():144-50. PubMed ID: 27371017 [TBL] [Abstract][Full Text] [Related]
3. A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate. Guo J; Chen Y; Zhao L; Sun P; Li H; Zhou L; Wang X; Pu Q J Chromatogr A; 2016 Dec; 1477():132-140. PubMed ID: 27908499 [TBL] [Abstract][Full Text] [Related]
4. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants. Guan Q; Noblitt SD; Henry CS Electrophoresis; 2012 Jan; 33(2):379-87. PubMed ID: 22222982 [TBL] [Abstract][Full Text] [Related]
5. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips. Wang Q; Zhang Y; Ding H; Wu J; Wang L; Zhou L; Pu Q J Chromatogr A; 2011 Dec; 1218(52):9422-7. PubMed ID: 22099226 [TBL] [Abstract][Full Text] [Related]
6. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows. Liu Y; Xia L; Xiao X; Li G Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208 [TBL] [Abstract][Full Text] [Related]
7. Robust and easy-to-use microchip electrophoresis within sub-millimeter channels for fast and highly efficient separation. Sun P; Wu J; Yang S; Li H; Zhao L; Wang Y; Wang X; Pu Q Talanta; 2021 Dec; 235():122747. PubMed ID: 34517615 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants. Guan Q; Noblitt SD; Henry CS Electrophoresis; 2012 Sep; 33(18):2875-83. PubMed ID: 23019105 [TBL] [Abstract][Full Text] [Related]
9. [Surface-modified microchip electrophoretic separation and analysis of functional components in health care products]. Lau WC; Chen YL; Xia L; Xiao XH; Li GK Se Pu; 2023 Oct; 41(10):937-948. PubMed ID: 37875416 [TBL] [Abstract][Full Text] [Related]
10. Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips. Nagata H; Tabuchi M; Hirano K; Baba Y Electrophoresis; 2005 Jun; 26(11):2247-53. PubMed ID: 15861467 [TBL] [Abstract][Full Text] [Related]
11. Electric Field-Driven On-Request Instant in Situ Formation/Removal of Solid Hydrogel within Microchannels for Efficient Electrophoretic Separation. Li H; Li F; Zhao L; Zhao L; Sun P; Wu J; Wang X; Pu Q ACS Appl Mater Interfaces; 2020 Feb; 12(7):8773-8779. PubMed ID: 31997635 [TBL] [Abstract][Full Text] [Related]
12. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis. Li R; Wang L; Gao X; Du G; Zhai H; Wang X; Guo G; Pu Q J Hazard Mater; 2013 Mar; 248-249():268-75. PubMed ID: 23385207 [TBL] [Abstract][Full Text] [Related]
13. Faster and improved microchip electrophoresis using a capillary bundle. Sun Y; Kwok YC; Nguyen NT Electrophoresis; 2007 Dec; 28(24):4765-8. PubMed ID: 18072216 [TBL] [Abstract][Full Text] [Related]
14. Enhanced capillary zone electrophoresis in cyclic olefin copolymer microchannels using the combination of dynamic and static coatings for rapid analysis of carnosine and niacinamide in cosmetics. Chen Y; Xia L; Xiao X; Li G J Sep Sci; 2022 Jun; 45(12):2045-2054. PubMed ID: 35324077 [TBL] [Abstract][Full Text] [Related]
15. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography. Sueyoshi K; Kitagawa F; Otsuka K Anal Chem; 2008 Feb; 80(4):1255-62. PubMed ID: 18201071 [TBL] [Abstract][Full Text] [Related]
16. Separation of aminophenol isomers in polyelectrolyte multilayers modified PDMS microchip. Xiao Y; Wang K; Yu XD; Xu JJ; Chen HY Talanta; 2007 Jun; 72(4):1316-21. PubMed ID: 19071763 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of poly(dimethylsiloxane) microchips using a double-chained cationic surfactant for efficiently resolving fluorescent dye adsorption. Han B; Xu Y; Zhang L; Yang X; Wang E Talanta; 2009 Aug; 79(3):959-62. PubMed ID: 19576471 [TBL] [Abstract][Full Text] [Related]
18. Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. Badal MY; Wong M; Chiem N; Salimi-Moosavi H; Harrison DJ J Chromatogr A; 2002 Feb; 947(2):277-86. PubMed ID: 11883661 [TBL] [Abstract][Full Text] [Related]
19. Removal of Zwitterionic Rhodamine B Using Foam Separation. Goto Y; Nema Y; Matsuoka K J Oleo Sci; 2020; 69(6):563-567. PubMed ID: 32522917 [TBL] [Abstract][Full Text] [Related]
20. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis. Gertsch JC; Noblitt SD; Cropek DM; Henry CS Anal Chem; 2010 May; 82(9):3426-9. PubMed ID: 20334437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]