BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36565693)

  • 1. Changes in the intra- and extra-mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process: Nuclear shrinkage and stiffening in cell differentiation.
    Nagayama K; Kodama F; Wataya N; Sato A; Matsumoto T
    J Mech Behav Biomed Mater; 2023 Feb; 138():105630. PubMed ID: 36565693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading.
    Schneider SE; Scott AK; Seelbinder B; Elzen CVD; Wilson RL; Miller EY; Beato QI; Ghosh S; Barthold JE; Bilyeu J; Emery NC; Pierce DM; Neu CP
    Acta Biomater; 2023 Jun; 163():339-350. PubMed ID: 35811070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume.
    Jin J; Jaspers RT; Wu G; Korfage JAM; Klein-Nulend J; Bakker AD
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology.
    Kim JK; Louhghalam A; Lee G; Schafer BW; Wirtz D; Kim DH
    Nat Commun; 2017 Dec; 8(1):2123. PubMed ID: 29242553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage.
    Nagayama K; Fukuei T
    Biomech Model Mechanobiol; 2020 Apr; 19(2):493-504. PubMed ID: 31506862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport.
    Iyer KV; Pulford S; Mogilner A; Shivashankar GV
    Biophys J; 2012 Oct; 103(7):1416-28. PubMed ID: 23062334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry.
    Li Q; Kumar A; Makhija E; Shivashankar GV
    Biomaterials; 2014 Jan; 35(3):961-9. PubMed ID: 24183171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organization and crosstalk of vimentin and actin stress fibers regulate the osteogenic differentiation of human adipose-derived stem cells.
    Fan T; Qu R; Jiang X; Yang Y; Sun B; Huang X; Zhou Z; Ouyang J; Zhong S; Dai J
    FASEB J; 2021 Feb; 35(2):e21175. PubMed ID: 33205555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation.
    Chen Z; Luo Q; Lin C; Kuang D; Song G
    Sci Rep; 2016 Jul; 6():30322. PubMed ID: 27444891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intranuclear Actin Regulates Osteogenesis.
    Sen B; Xie Z; Uzer G; Thompson WR; Styner M; Wu X; Rubin J
    Stem Cells; 2015 Oct; 33(10):3065-76. PubMed ID: 26140478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells.
    Matsushita K; Nakahara C; Kimura S; Sakamoto N; Ii S; Miyoshi H
    FASEB J; 2021 Dec; 35(12):e22071. PubMed ID: 34820910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization.
    Hu J; Chen S; Hu W; Lü S; Long M
    Biophys J; 2019 Oct; 117(8):1405-1418. PubMed ID: 31585706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion.
    Nunes Vicente F; Chen T; Rossier O; Giannone G
    Trends Cell Biol; 2023 Mar; 33(3):204-220. PubMed ID: 36055943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study.
    Tsukamoto S; Asakawa T; Kimura S; Takesue N; Mofrad MRK; Sakamoto N
    J Biomech; 2021 Apr; 119():110292. PubMed ID: 33667883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resiliency of the plasma membrane and actin cortex to large-scale deformation.
    Haase K; Pelling AE
    Cytoskeleton (Hoboken); 2013 Sep; 70(9):494-514. PubMed ID: 23929821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction.
    Chambliss AB; Khatau SB; Erdenberger N; Robinson DK; Hodzic D; Longmore GD; Wirtz D
    Sci Rep; 2013; 3():1087. PubMed ID: 23336069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the mechanical connection between apical stress fibers and the nucleus in vascular smooth muscle cells cultured on a substrate.
    Nagayama K; Yamazaki S; Yahiro Y; Matsumoto T
    J Biomech; 2014 Apr; 47(6):1422-9. PubMed ID: 24548337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells.
    Jetta D; Gottlieb PA; Verma D; Sachs F; Hua SZ
    J Cell Sci; 2019 Jun; 132(11):. PubMed ID: 31076516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic interaction between actin and nesprin2 maintain the cell nucleus in a prestressed state.
    Kumar A; Shivashankar GV
    Methods Appl Fluoresc; 2016 Nov; 4(4):044008. PubMed ID: 28192301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation.
    Tai IC; Wang YH; Chen CH; Chuang SC; Chang JK; Ho ML
    Int J Nanomedicine; 2015; 10():5881-94. PubMed ID: 26451103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.