These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36566281)
1. Transition1x - a dataset for building generalizable reactive machine learning potentials. Schreiner M; Bhowmik A; Vegge T; Busk J; Winther O Sci Data; 2022 Dec; 9(1):779. PubMed ID: 36566281 [TBL] [Abstract][Full Text] [Related]
2. OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy. Christensen AS; Sirumalla SK; Qiao Z; O'Connor MB; Smith DGA; Ding F; Bygrave PJ; Anandkumar A; Welborn M; Manby FR; Miller TF J Chem Phys; 2021 Nov; 155(20):204103. PubMed ID: 34852495 [TBL] [Abstract][Full Text] [Related]
3. MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods. Nandi S; Vegge T; Bhowmik A Sci Data; 2023 Nov; 10(1):783. PubMed ID: 37938558 [TBL] [Abstract][Full Text] [Related]
4. Dataset's chemical diversity limits the generalizability of machine learning predictions. Glavatskikh M; Leguy J; Hunault G; Cauchy T; Da Mota B J Cheminform; 2019 Nov; 11(1):69. PubMed ID: 33430991 [TBL] [Abstract][Full Text] [Related]
5. Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model. Garrido Torres JA; Jennings PC; Hansen MH; Boes JR; Bligaard T Phys Rev Lett; 2019 Apr; 122(15):156001. PubMed ID: 31050513 [TBL] [Abstract][Full Text] [Related]
6. Graph neural network interatomic potential ensembles with calibrated aleatoric and epistemic uncertainty on energy and forces. Busk J; Schmidt MN; Winther O; Vegge T; Jørgensen PB Phys Chem Chem Phys; 2023 Sep; 25(37):25828-25837. PubMed ID: 37724552 [TBL] [Abstract][Full Text] [Related]
7. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
8. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks. Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283 [TBL] [Abstract][Full Text] [Related]
9. NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces. Haghighatlari M; Li J; Guan X; Zhang O; Das A; Stein CJ; Heidar-Zadeh F; Liu M; Head-Gordon M; Bertels L; Hao H; Leven I; Head-Gordon T Digit Discov; 2022 Jun; 1(3):333-343. PubMed ID: 35769203 [TBL] [Abstract][Full Text] [Related]
10. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals. Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033 [TBL] [Abstract][Full Text] [Related]
11. Beyond MD17: the reactive xxMD dataset. Pengmei Z; Liu J; Shu Y Sci Data; 2024 Feb; 11(1):222. PubMed ID: 38378670 [TBL] [Abstract][Full Text] [Related]
12. Machine-learning accelerated geometry optimization in molecular simulation. Yang Y; Jiménez-Negrón OA; Kitchin JR J Chem Phys; 2021 Jun; 154(23):234704. PubMed ID: 34241251 [TBL] [Abstract][Full Text] [Related]
13. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning. Gu Y; Li J; Kang H; Zhang B; Zheng S Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234 [TBL] [Abstract][Full Text] [Related]
14. Coarse-Graining with Equivariant Neural Networks: A Path Toward Accurate and Data-Efficient Models. Loose TD; Sahrmann PG; Qu TS; Voth GA J Phys Chem B; 2023 Dec; 127(49):10564-10572. PubMed ID: 38033234 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related]
16. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
17. DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials. Li W; Ou Q; Chen Y; Cao Y; Liu R; Zhang C; Zheng D; Cai C; Wu X; Wang H; Chen M; Zhang L J Phys Chem A; 2022 Dec; 126(49):9154-9164. PubMed ID: 36455227 [TBL] [Abstract][Full Text] [Related]
19. RotNet: A Rotationally Invariant Graph Neural Network for Quantum Mechanical Calculations. Tu H; Han Y; Wang Z; Chen A; Tao K; Ye S; Wang S; Wei Z; Li J Small Methods; 2024 Jan; 8(1):e2300534. PubMed ID: 37727096 [TBL] [Abstract][Full Text] [Related]
20. Message-passing neural networks for high-throughput polymer screening. St John PC; Phillips C; Kemper TW; Wilson AN; Guan Y; Crowley MF; Nimlos MR; Larsen RE J Chem Phys; 2019 Jun; 150(23):234111. PubMed ID: 31228909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]