BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36566539)

  • 1. Formation of hydroxyphenyl-pyranoanthocyanins derived from cyanidin-3-O-glucoside and effects of high-pressure processing on the transformation efficiency.
    Zeng Y; Li X; Yuan K; Chen B; Zhang W; Wang C; Sun J; Ramaswamy HS; Bai W
    Food Chem; 2023 May; 408():135247. PubMed ID: 36566539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High yield production of cyanidin-derived pyranoanthocyanins using 4-vinylphenol and 4-vinylguaiacol as cofactors.
    Miyagusuku-Cruzado G; Voss DM; Ortiz-Santiago TN; Cheng Y; Giusti MM
    Food Chem; 2023 Nov; 427():136705. PubMed ID: 37406449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Anthocyanin and Cofactor Structure on the Formation Efficiency of Naturally Derived Pyranoanthocyanins.
    Miyagusuku-Cruzado G; Voss DM; Giusti MM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of pyranoanthocyanins using Escherichia coli co-cultures.
    Akdemir H; Silva A; Zha J; Zagorevski DV; Koffas MAG
    Metab Eng; 2019 Sep; 55():290-298. PubMed ID: 31125607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyranoanthocyanin formation rates and yields as affected by cyanidin-3-substitutions and pyruvic or caffeic acids.
    Zhu X; Giusti MM
    Food Chem; 2021 May; 345():128776. PubMed ID: 33340889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts.
    Zhou J; Tang C; Zou S; Lei L; Wu Y; Yang W; Harindintwali JD; Zhang J; Zeng W; Deng D; Zhao M; Yu X; Liu X; Qiu S; Arneborg N
    Food Chem; 2024 Apr; 438():137956. PubMed ID: 37989022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.).
    Xu Z; Wang C; Yan H; Zhao Z; You L; Ho CT
    Food Chem; 2022 Mar; 373(Pt A):131396. PubMed ID: 34710683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between a Commercial Mannoprotein and Cyanidin-3-
    Liu C; Li X; Zeng Y; Liang S; Sun J; Bai W
    J Agric Food Chem; 2023 Nov; ():. PubMed ID: 37910136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the difference in color enhancement effect on cyanidin-3-O-glucoside by phenolic acids and the interaction mechanism.
    Cao Y; Zhao B; Li Y; Gao H; Xia Q; Fang Z
    Food Chem; 2023 Jun; 411():135409. PubMed ID: 36682168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation.
    Farr JE; Sigurdson GT; Giusti MM
    Food Chem; 2018 Sep; 259():261-269. PubMed ID: 29680053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of hydroxyphenyl-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging.
    Rentzsch M; Schwarz M; Winterhalter P; Hermosín-Gutiérrez I
    J Agric Food Chem; 2007 Jun; 55(12):4883-8. PubMed ID: 17506569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O-glucoside and major proteins in cow's milk.
    Pan F; Li J; Zhao L; Tuersuntuoheti T; Mehmood A; Zhou N; Hao S; Wang C; Guo Y; Lin W
    J Food Biochem; 2021 Jan; 45(1):e13570. PubMed ID: 33222207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice.
    Hillebrand S; Schwarz M; Winterhalter P
    J Agric Food Chem; 2004 Dec; 52(24):7331-8. PubMed ID: 15563216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effects of high pressure processing on the interaction between RG-I pectin and cyanidin-3-glucoside.
    Hou Z; Luan L; Hu X; Chen S; Ye X
    Food Chem; 2022 Jul; 383():132373. PubMed ID: 35183967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of low power ultrasonic treatment on the transformation of cyanidin-3-O-glucoside to methylpyranocyanidin-3-O-glucoside and its stability evaluation.
    Sun J; Luo H; Li X; Li X; Lu Y; Bai W
    Food Chem; 2019 Mar; 276():240-246. PubMed ID: 30409590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion.
    Liu J; Cheng J; Ma Z; Liang T; Jing P
    J Food Sci; 2022 Jan; 87(1):141-152. PubMed ID: 34954830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sucrose degradation product furfural on cyanidin-3-O-glucoside: Mechanism of action, stability, and identification of products in sugar solutions.
    Wang J; Cheng Z; Gao N; Zhang Y; Wang M; Ren G; Song B; Liang Q; Bao Y; Tan H; Chen W; Li B; Tian J
    Food Res Int; 2023 Jun; 168():112788. PubMed ID: 37120234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal stability comparison between 10-catechyl-pyranoanthocyanins and anthocyanins derived from pelargonidin, cyanidin, and malvidin.
    Voss DM; Miyagusuku-Cruzado G; Giusti MM
    Food Chem; 2023 Mar; 403():134305. PubMed ID: 36182854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization.
    Li T; Wang L; Zhang X; Yu P; Chen Z
    Food Chem; 2021 Nov; 363():130367. PubMed ID: 34198143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.