These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36566592)
1. Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers. Haldar D; Kazerooni AF; Arif S; Familiar A; Madhogarhia R; Khalili N; Bagheri S; Anderson H; Shaikh IS; Mahtabfar A; Kim MC; Tu W; Ware J; Vossough A; Davatzikos C; Storm PB; Resnick A; Nabavizadeh A Neoplasia; 2023 Feb; 36():100869. PubMed ID: 36566592 [TBL] [Abstract][Full Text] [Related]
2. Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas. Liu Z; Hong X; Wang L; Ma Z; Guan F; Wang W; Qiu Y; Zhang X; Duan W; Wang M; Sun C; Zhao Y; Duan J; Sun Q; Liu L; Ding L; Ji Y; Yan D; Liu X; Cheng J; Zhang Z; Li ZC; Yan J BMC Cancer; 2023 Sep; 23(1):848. PubMed ID: 37697238 [TBL] [Abstract][Full Text] [Related]
3. Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis. Xu J; Lai M; Li S; Ye K; Li L; Hu Q; Ai R; Zhou J; Li J; Zhen J; Cai L; Shi C Clin Neurol Neurosurg; 2022 Nov; 222():107478. PubMed ID: 36244075 [TBL] [Abstract][Full Text] [Related]
4. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
5. Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas. Kudus K; Wagner MW; Namdar K; Bennett J; Nobre L; Tabori U; Hawkins C; Ertl-Wagner BB; Khalvati F Sci Rep; 2024 Aug; 14(1):19102. PubMed ID: 39154039 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
7. Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. Lin P; Peng YT; Gao RZ; Wei Y; Li XJ; Huang SN; Fang YY; Wei ZX; Huang ZG; Yang H; Chen G J Cancer Res Clin Oncol; 2020 May; 146(5):1253-1262. PubMed ID: 32065261 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma. Sun Y; Zhang Y; Gan J; Zhou H; Guo S; Wang X; Zhang C; Zheng W; Zhao X; Li X; Wang L; Ning S Comput Biol Med; 2024 Jul; 177():108636. PubMed ID: 38810473 [TBL] [Abstract][Full Text] [Related]
12. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
13. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
14. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study. Duan J; Zhang Z; Chen Y; Zhao Y; Sun Q; Wang W; Zheng H; Liang D; Cheng J; Yan J; Li ZC Mol Oncol; 2023 Apr; 17(4):629-646. PubMed ID: 36688633 [TBL] [Abstract][Full Text] [Related]
15. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
18. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
19. Retrospective and integrative analyses of molecular characteristics and their specific imaging parameters in pediatric grade 1 gliomas. Coutant M; Lhermitte B; Guérin E; Chammas A; Reita D; Sebastia C; Douzal V; Gabor F; Salmon A; Chenard MP; Todeschi J; Coca A; Heng MA; Vincent F; Entz-Werlé N Pediatr Blood Cancer; 2022 Aug; 69(8):e29575. PubMed ID: 35373885 [TBL] [Abstract][Full Text] [Related]