BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36566677)

  • 1. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa.
    Song W; Fu C; Fang Y; Wang Z; Li J; Zhang X; Bhatt K; Liu L; Wang N; Liu F; Zhu S
    Environ Pollut; 2023 Feb; 318():120925. PubMed ID: 36566677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa.
    Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W
    Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris.
    Wang Z; Fu D; Gao L; Qi H; Su Y; Peng L
    Ecotoxicol Environ Saf; 2021 Jul; 217():112199. PubMed ID: 33864982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interfacial interaction between typical microplastics and Pb
    Yu Y; Liu J; Zhu J; Lei M; Huang C; Xu H; Liu Z; Wang P
    Sci Total Environ; 2024 Mar; 918():170591. PubMed ID: 38309345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microplastics PAN polymer and/or Cu
    Lin W; Su F; Lin M; Jin M; Li Y; Ding K; Chen Q; Qian Q; Sun X
    Environ Pollut; 2020 Oct; 265(Pt A):114985. PubMed ID: 32563949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris.
    Fu D; Zhang Q; Fan Z; Qi H; Wang Z; Peng L
    Aquat Toxicol; 2019 Nov; 216():105319. PubMed ID: 31586885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa).
    Xu Y; Peng BY; Zhang X; Xu Q; Yang L; Chen J; Zhou X; Zhang Y
    Water Res; 2024 Aug; 259():121841. PubMed ID: 38820734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic response of the freshwater green algae Chlorella pyrenoidosa to combined effect of flotation reagent butyl xanthate and nickel.
    Li H; Yao J; Duran R; Liu J; Min N; Chen Z; Zhu X; Zhao C; Ma B; Pang W; Li M; Cao Y; Liu B
    Environ Pollut; 2021 Oct; 286():117285. PubMed ID: 33984773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling.
    Zhang Y; Wang JX; Liu Y; Zhang JT; Wang JH; Chi ZY
    Sci Total Environ; 2024 Feb; 912():169659. PubMed ID: 38159749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desorption of sulfamethoxazole from polyamide 6 microplastics: Environmental factors, simulated gastrointestinal fluids, and desorption mechanisms.
    Wang K; Wang K; Chen Y; Liang S; Zhang Y; Guo C; Wang W; Wang J
    Ecotoxicol Environ Saf; 2023 Oct; 264():115400. PubMed ID: 37651796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The toxic effects of polystyrene microplastics on freshwater algae Chlorella pyrenoidosa depends on the different size of polystyrene microplastics.
    Cao Q; Sun W; Yang T; Zhu Z; Jiang Y; Hu W; Wei W; Zhang Y; Yang H
    Chemosphere; 2022 Dec; 308(Pt 1):136135. PubMed ID: 36007743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa.
    Li Z; Yi X; Zhou H; Chi T; Li W; Yang K
    Environ Pollut; 2020 Feb; 257():113604. PubMed ID: 31761578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fate and risk of microplastic and antibiotic sulfamethoxazole coexisting in the environment.
    Zhang X; Liu L; Chen X; Li J; Chen J; Wang H
    Environ Geochem Health; 2023 Jun; 45(6):2905-2915. PubMed ID: 36103062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplastics decrease the toxicity of sulfamethoxazole to marine algae (Skeletonema costatum) at the cellular and molecular levels.
    Li X; Luo J; Zeng H; Zhu L; Lu X
    Sci Total Environ; 2022 Jun; 824():153855. PubMed ID: 35176357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna.
    Zhang F; Wang Z; Song L; Fang H; Wang DG
    Environ Pollut; 2020 Feb; 257():113451. PubMed ID: 31706783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa.
    Liu K; Li J; Zhou Y; Li W; Cheng H; Han J
    Ecotoxicol Environ Saf; 2023 Jun; 257():114929. PubMed ID: 37084660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa.
    Zhou Y; Yue Y; Chen X; Wu F; Li W; Li P; Han J
    Sci Total Environ; 2024 Mar; 917():170460. PubMed ID: 38286284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa.
    Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W
    Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Toxic effects of dichloromethane and dichloroethane to Chlorella pyrenoidosa].
    Wu SJ; Yu X; Wu EM; Chen JM
    Huan Jing Ke Xue; 2010 Jun; 31(6):1655-61. PubMed ID: 20698286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.