These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36566677)
1. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa. Song W; Fu C; Fang Y; Wang Z; Li J; Zhang X; Bhatt K; Liu L; Wang N; Liu F; Zhu S Environ Pollut; 2023 Feb; 318():120925. PubMed ID: 36566677 [TBL] [Abstract][Full Text] [Related]
2. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150 [TBL] [Abstract][Full Text] [Related]
3. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris. Wang Z; Fu D; Gao L; Qi H; Su Y; Peng L Ecotoxicol Environ Saf; 2021 Jul; 217():112199. PubMed ID: 33864982 [TBL] [Abstract][Full Text] [Related]
4. The interfacial interaction between typical microplastics and Pb Yu Y; Liu J; Zhu J; Lei M; Huang C; Xu H; Liu Z; Wang P Sci Total Environ; 2024 Mar; 918():170591. PubMed ID: 38309345 [TBL] [Abstract][Full Text] [Related]
5. Effect of microplastics PAN polymer and/or Cu Lin W; Su F; Lin M; Jin M; Li Y; Ding K; Chen Q; Qian Q; Sun X Environ Pollut; 2020 Oct; 265(Pt A):114985. PubMed ID: 32563949 [TBL] [Abstract][Full Text] [Related]
6. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Fu D; Zhang Q; Fan Z; Qi H; Wang Z; Peng L Aquat Toxicol; 2019 Nov; 216():105319. PubMed ID: 31586885 [TBL] [Abstract][Full Text] [Related]
7. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa). Xu Y; Peng BY; Zhang X; Xu Q; Yang L; Chen J; Zhou X; Zhang Y Water Res; 2024 Aug; 259():121841. PubMed ID: 38820734 [TBL] [Abstract][Full Text] [Related]
8. Toxic response of the freshwater green algae Chlorella pyrenoidosa to combined effect of flotation reagent butyl xanthate and nickel. Li H; Yao J; Duran R; Liu J; Min N; Chen Z; Zhu X; Zhao C; Ma B; Pang W; Li M; Cao Y; Liu B Environ Pollut; 2021 Oct; 286():117285. PubMed ID: 33984773 [TBL] [Abstract][Full Text] [Related]
9. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. Zhang Y; Wang JX; Liu Y; Zhang JT; Wang JH; Chi ZY Sci Total Environ; 2024 Feb; 912():169659. PubMed ID: 38159749 [TBL] [Abstract][Full Text] [Related]
10. Desorption of sulfamethoxazole from polyamide 6 microplastics: Environmental factors, simulated gastrointestinal fluids, and desorption mechanisms. Wang K; Wang K; Chen Y; Liang S; Zhang Y; Guo C; Wang W; Wang J Ecotoxicol Environ Saf; 2023 Oct; 264():115400. PubMed ID: 37651796 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Polyethylene Microplastics on Growth and Antioxydant Response of Oscillatoria Princeps and Chlorella Pyrenoidosa. Zhao M; Ren Z; Wei Z; Shi H; Wang L; Liang Y Bull Environ Contam Toxicol; 2024 Oct; 113(5):53. PubMed ID: 39400598 [TBL] [Abstract][Full Text] [Related]
12. The toxic effects of polystyrene microplastics on freshwater algae Chlorella pyrenoidosa depends on the different size of polystyrene microplastics. Cao Q; Sun W; Yang T; Zhu Z; Jiang Y; Hu W; Wei W; Zhang Y; Yang H Chemosphere; 2022 Dec; 308(Pt 1):136135. PubMed ID: 36007743 [TBL] [Abstract][Full Text] [Related]
13. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Li Z; Yi X; Zhou H; Chi T; Li W; Yang K Environ Pollut; 2020 Feb; 257():113604. PubMed ID: 31761578 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism. Li J; Min Z; Li W; Xu L; Han J; Li P Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625 [TBL] [Abstract][Full Text] [Related]
15. The fate and risk of microplastic and antibiotic sulfamethoxazole coexisting in the environment. Zhang X; Liu L; Chen X; Li J; Chen J; Wang H Environ Geochem Health; 2023 Jun; 45(6):2905-2915. PubMed ID: 36103062 [TBL] [Abstract][Full Text] [Related]
16. Microplastics decrease the toxicity of sulfamethoxazole to marine algae (Skeletonema costatum) at the cellular and molecular levels. Li X; Luo J; Zeng H; Zhu L; Lu X Sci Total Environ; 2022 Jun; 824():153855. PubMed ID: 35176357 [TBL] [Abstract][Full Text] [Related]
17. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna. Zhang F; Wang Z; Song L; Fang H; Wang DG Environ Pollut; 2020 Feb; 257():113451. PubMed ID: 31706783 [TBL] [Abstract][Full Text] [Related]
18. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa. Liu K; Li J; Zhou Y; Li W; Cheng H; Han J Ecotoxicol Environ Saf; 2023 Jun; 257():114929. PubMed ID: 37084660 [TBL] [Abstract][Full Text] [Related]
19. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. Zhou Y; Yue Y; Chen X; Wu F; Li W; Li P; Han J Sci Total Environ; 2024 Mar; 917():170460. PubMed ID: 38286284 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa. Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]