These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 36566808)
1. Recycling of waste crab shells into reinforced poly (lactic acid) biocomposites for 3D printing. Yang F; Ye X; Zhong J; Lin Z; Wu S; Hu Y; Zheng W; Zhou W; Wei Y; Dong X Int J Biol Macromol; 2023 Apr; 234():122974. PubMed ID: 36566808 [TBL] [Abstract][Full Text] [Related]
2. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites. Yu W; Dong L; Lei W; Zhou Y; Pu Y; Zhang X Molecules; 2021 May; 26(11):. PubMed ID: 34072204 [TBL] [Abstract][Full Text] [Related]
3. Comparative Investigations on Properties of Three Kinds of FDM 3D-Printed Natural Plant Powder/Poly(lactic acid) Biocomposites. Xu D; Shi J; Qiu R; Lei W; Yu W Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771858 [TBL] [Abstract][Full Text] [Related]
4. FDM 3D Printing and Soil-Burial-Degradation Behaviors of Residue of Astragalus Particles/Thermoplastic Starch/Poly(lactic acid) Biocomposites. Ni Z; Shi J; Li M; Lei W; Yu W Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242957 [TBL] [Abstract][Full Text] [Related]
5. Effects of Wood Flour (WF) Pretreatment and the Addition of a Toughening Agent on the Properties of FDM 3D-Printed WF/Poly(lactic acid) Biocomposites. Yu W; Li M; Lei W; Pu Y; Sun K; Ma Y Molecules; 2022 May; 27(9):. PubMed ID: 35566335 [TBL] [Abstract][Full Text] [Related]
6. Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing. Yang F; Zeng J; Long H; Xiao J; Luo Y; Gu J; Zhou W; Wei Y; Dong X Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32182784 [TBL] [Abstract][Full Text] [Related]
8. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites. Yu W; Shi J; Sun L; Lei W Molecules; 2022 Oct; 27(21):. PubMed ID: 36364199 [TBL] [Abstract][Full Text] [Related]
9. Powder Loading Effects on the Physicochemical and Mechanical Properties of 3D Printed Poly Lactic Acid/Hydroxyapatite Biocomposites. Custodio CL; Broñola PJM; Cayabyab SR; Lagura VU; Celorico JR; Basilia BA Int J Bioprint; 2021; 7(1):326. PubMed ID: 33585715 [TBL] [Abstract][Full Text] [Related]
10. Degradation Behavior of 3D-Printed Residue of Astragalus Particle/Poly(Lactic Acid) Biocomposites under Soil Conditions. Yu W; Shi J; Qiu R; Lei W Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987257 [TBL] [Abstract][Full Text] [Related]
11. FDM 3D Printing and Properties of PBS/PLA Blends. Yu W; Sun L; Li M; Li M; Lei W; Wei C Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959985 [TBL] [Abstract][Full Text] [Related]
12. Rheological Behavior and Dynamic Mechanical Properties for Interpretation of Layer Adhesion in FDM 3D Printing. Thumsorn S; Prasong W; Kurose T; Ishigami A; Kobayashi Y; Ito H Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808766 [TBL] [Abstract][Full Text] [Related]
13. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Wang Q; Ji C; Sun L; Sun J; Liu J Molecules; 2020 May; 25(10):. PubMed ID: 32429191 [TBL] [Abstract][Full Text] [Related]
14. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502 [TBL] [Abstract][Full Text] [Related]
15. A Comprehensive Evaluation of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application. Jamnongkan T; Jaroensuk O; Khankhuean A; Laobuthee A; Srisawat N; Pangon A; Mongkholrattanasit R; Phuengphai P; Wattanakornsiri A; Huang CF Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160589 [TBL] [Abstract][Full Text] [Related]
16. Biocomposites containing poly(lactic acid) and chitosan for 3D printing - Assessment of mechanical, antibacterial and in vitro biodegradability properties. Hui I; Pasquier E; Solberg A; Agrenius K; Håkansson J; Chinga-Carrasco G J Mech Behav Biomed Mater; 2023 Nov; 147():106136. PubMed ID: 37774439 [TBL] [Abstract][Full Text] [Related]
17. Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Prasong W; Ishigami A; Thumsorn S; Kurose T; Ito H Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33673591 [TBL] [Abstract][Full Text] [Related]
18. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086 [TBL] [Abstract][Full Text] [Related]
19. Research on the Application of MWCNTs/PLA Composite Material in the Manufacturing of Conductive Composite Products in 3D Printing. Luo J; Wang H; Zuo D; Ji A; Liu Y Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30513580 [TBL] [Abstract][Full Text] [Related]
20. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds. Anita Lett J; Sagadevan S; Léonard E; Fatimah I; Motalib Hossain MA; Mohammad F; Al-Lohedan HA; Paiman S; Alshahateet SF; Abd Razak SI; Johan MR Artif Organs; 2021 Dec; 45(12):1501-1512. PubMed ID: 34309044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]