These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36566854)
21. Warming promotes soil CO Lu B; Song L; Zang S; Wang H Sci Total Environ; 2022 Jul; 829():154725. PubMed ID: 35331769 [TBL] [Abstract][Full Text] [Related]
22. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Hapsari KA; Jennerjahn T; Nugroho SH; Yulianto E; Behling H Glob Chang Biol; 2022 May; 28(10):3459-3479. PubMed ID: 35312144 [TBL] [Abstract][Full Text] [Related]
23. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
25. [Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China]. Nie YY; Wang HH; Li XJ; Ren YB; Jin CS; Xui ZK; Lyu MK; Xie JS Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):748-756. PubMed ID: 29722215 [TBL] [Abstract][Full Text] [Related]
26. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting. Howell A; Bretfeld M; Belmont E Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616 [TBL] [Abstract][Full Text] [Related]
27. [Responses of soil potential carbon/nitrogen mineralization and microbial activities to extreme droughts in a meadow steppe]. Li L; Wang Y; Hu SY; Li Y; Shen Y; Yu Q; Huang JH; Wang CH Ying Yong Sheng Tai Xue Bao; 2020 Mar; 31(3):814-820. PubMed ID: 32537976 [TBL] [Abstract][Full Text] [Related]
28. Mineral Soils Are an Important Intermediate Storage Pool of Black Carbon in Fennoscandian Boreal Forests. Eckdahl JA; Rodriguez PC; Kristensen JA; Metcalfe DB; Ljung K Global Biogeochem Cycles; 2022 Nov; 36(11):e2022GB007489. PubMed ID: 36582662 [TBL] [Abstract][Full Text] [Related]
29. The ongoing lateral expansion of peatlands in Finland. Juselius-Rajamäki T; Väliranta M; Korhola A Glob Chang Biol; 2023 Dec; 29(24):7173-7191. PubMed ID: 37855045 [TBL] [Abstract][Full Text] [Related]
30. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China. Ouyang X; Zhou G; Huang Z; Zhou C; Li J; Shi J; Zhang D J Environ Sci (China); 2008; 20(9):1082-9. PubMed ID: 19143315 [TBL] [Abstract][Full Text] [Related]
31. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils. Diáková K; Čapek P; Kohoutová I; Mpamah PA; Bárta J; Biasi C; Martikainen PJ; Šantrůčková H FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27316560 [TBL] [Abstract][Full Text] [Related]
32. Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA. Matosziuk LM; Alleau Y; Kerns BK; Bailey J; Johnson MG; Hatten JA Geoderma; 2019 Aug; 348():1-11. PubMed ID: 34795456 [TBL] [Abstract][Full Text] [Related]
33. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664 [TBL] [Abstract][Full Text] [Related]
34. Persistent high temperature and low precipitation reduce peat carbon accumulation. Bragazza L; Buttler A; Robroek BJ; Albrecht R; Zaccone C; Jassey VE; Signarbieux C Glob Chang Biol; 2016 Dec; 22(12):4114-4123. PubMed ID: 27081764 [TBL] [Abstract][Full Text] [Related]
35. Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence. Zhang XH; Li LQ; Pan GX J Environ Sci (China); 2007; 19(3):319-26. PubMed ID: 17918594 [TBL] [Abstract][Full Text] [Related]
36. Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. Thuile Bistarelli L; Poyntner C; Santín C; Doerr SH; Talluto MV; Singer G; Sigmund G ACS ES T Water; 2021 Jul; 1(7):1648-1656. PubMed ID: 34278381 [TBL] [Abstract][Full Text] [Related]
37. Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. Wu Y; Xu X; McCarter CPR; Zhang N; Ganzoury MA; Waddington JM; de Lannoy CF Sci Total Environ; 2022 May; 822():153579. PubMed ID: 35114220 [TBL] [Abstract][Full Text] [Related]
38. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Pellegrini AFA; Caprio AC; Georgiou K; Finnegan C; Hobbie SE; Hatten JA; Jackson RB Glob Chang Biol; 2021 Aug; 27(16):3810-3823. PubMed ID: 33884700 [TBL] [Abstract][Full Text] [Related]
39. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Wu Y; Zhang N; Slater G; Waddington JM; de Lannoy CF Sci Total Environ; 2020 Apr; 714():136444. PubMed ID: 31986381 [TBL] [Abstract][Full Text] [Related]
40. Long-term fertilization modifies the mineralization of soil organic matter in response to added substrate. Zhang J; Sayer EJ; Zhou J; Li Y; Li Y; Li Z; Wang F Sci Total Environ; 2021 Dec; 798():149341. PubMed ID: 34375236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]