These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36566854)

  • 41. Pyrogenic carbon in Australian soils.
    Qi F; Naidu R; Bolan NS; Dong Z; Yan Y; Lamb D; Bucheli TD; Choppala G; Duan L; Semple KT
    Sci Total Environ; 2017 May; 586():849-857. PubMed ID: 28215804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan.
    Tang S; Cheng W; Hu R; Guigue J; Hattori S; Tawaraya K; Tokida T; Fukuoka M; Yoshimoto M; Sakai H; Usui Y; Xu X; Hasegawa T
    Sci Total Environ; 2021 Feb; 756():143845. PubMed ID: 33277011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon emissions from a temperate coastal peatland wildfire: contributions from natural plant communities and organic soils.
    Mickler RA
    Carbon Balance Manag; 2021 Sep; 16(1):26. PubMed ID: 34468897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter.
    Zhang S; Fang Y; Luo Y; Li Y; Ge T; Wang Y; Wang H; Yu B; Song X; Chen J; Zhou J; Li Y; Chang SX
    Sci Total Environ; 2021 Dec; 801():149717. PubMed ID: 34425443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Land transformation in tropical savannas preferentially decomposes newly added biomass, whether C
    Wynn JG; Duvert C; Bird MI; Munksgaard NC; Setterfield SA; Hutley LB
    Ecol Appl; 2020 Dec; 30(8):e02192. PubMed ID: 32510803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: the roles of peat type and land use.
    Brouns K; Verhoeven JT; Hefting MM
    J Environ Manage; 2014 Oct; 143():44-53. PubMed ID: 24837279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.
    Briones MJ; McNamara NP; Poskitt J; Crow SE; Ostle NJ
    Glob Chang Biol; 2014 Sep; 20(9):2971-82. PubMed ID: 24687903
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil CO
    Song Y; Cheng X; Song C; Li M; Gao S; Liu Z; Gao J; Wang X
    Front Microbiol; 2022; 13():1093487. PubMed ID: 36583043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Responses of peat carbon at different depths to simulated warming and oxidizing.
    Liu L; Chen H; Zhu Q; Yang G; Zhu E; Hu J; Peng C; Jiang L; Zhan W; Ma T; He Y; Zhu D
    Sci Total Environ; 2016 Apr; 548-549():429-440. PubMed ID: 26826851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change.
    Gavazov K; Albrecht R; Buttler A; Dorrepaal E; Garnett MH; Gogo S; Hagedorn F; Mills RTE; Robroek BJM; Bragazza L
    Glob Chang Biol; 2018 Sep; 24(9):3911-3921. PubMed ID: 29569798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Change in nitrogen availability of northern peatlands and its effect on carbon sink function].
    Gao JL; Song YY; Song CC; Gong C; Ma XY; Gao SQ; Liu ZD
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2663-2669. PubMed ID: 36384600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions.
    AminiTabrizi R; Dontsova K; Graf Grachet N; Tfaily MM
    Sci Total Environ; 2022 Jan; 804():150045. PubMed ID: 34798718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in bacterial communities during rice cultivation remove phenolic constraints on peatland carbon preservation.
    Qin L; Tian W; Freeman C; Jia Z; Yin X; Gao C; Zou Y; Jiang M
    ISME Commun; 2024 Jan; 4(1):ycae022. PubMed ID: 38500699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating McGill Wetland Model (MWM) with peat cohort tracking and microbial controls.
    Shao S; Wu J; He H; Roulet N
    Sci Total Environ; 2022 Feb; 806(Pt 3):151223. PubMed ID: 34717989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drainage increases CO
    Prananto JA; Minasny B; Comeau LP; Rudiyanto R; Grace P
    Glob Chang Biol; 2020 Aug; 26(8):4583-4600. PubMed ID: 32391633
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant inputs mediate the linkage between soil carbon and net nitrogen mineralization.
    Zhang X; Zhu B; Yu F; Cheng W
    Sci Total Environ; 2021 Oct; 790():148208. PubMed ID: 34380287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China.
    Liu H; Wang J; Sun X; McLaughlin NB; Jia S; Liang A; Zhang S
    Sci Total Environ; 2023 Aug; 884():163835. PubMed ID: 37137375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effects of soil moisture on priming effect of soil organic carbon in meadow in Wuyi Mountain, China.].
    Li JY; Lyu MK; Li XJ; Jiang YM; Xie JS
    Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1250-1258. PubMed ID: 33899393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses.
    Ma XY; Xu H; Cao ZY; Shu L; Zhu RL
    Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.