These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36567692)

  • 1. Electrospun membranes filtering 100 nm particles from air flow by means of the van der Waals and Coulomb forces.
    Chen K; Wu J; Yarin AL
    J Memb Sci; 2022 Feb; 644():120138. PubMed ID: 36567692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols.
    Leung WWF; Sun Q
    Sep Purif Technol; 2020 Nov; 250():116886. PubMed ID: 32322159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols.
    Leung WW; Sun Q
    Sep Purif Technol; 2020 Aug; 245():116887. PubMed ID: 32372877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Van der Waals Emulsions: Emulsions Stabilized by Surface-Inactive, Hydrophilic Particles via van der Waals Attraction.
    Marina PF; Cheng C; Sedev R; Stocco A; Binks BP; Wang D
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9510-9514. PubMed ID: 29808514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators.
    Aykol M; Hou B; Dhall R; Chang SW; Branham W; Qiu J; Cronin SB
    Nano Lett; 2014 May; 14(5):2426-30. PubMed ID: 24758201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis.
    Abu-Lail NI; Camesano TA
    Langmuir; 2006 Aug; 22(17):7296-301. PubMed ID: 16893229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative importance of electrostatic and van der Waals forces in particle adhesion to rough conducting surfaces.
    Rajupet S; Riet AA; Chen Q; Sow M; Lacks DJ
    Phys Rev E; 2021 Apr; 103(4-1):042906. PubMed ID: 34005883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of particle shape and surface roughness on van der Waals interactions and coupling to dynamics in nanocrystals.
    Lee J; Nakouzi E; Heo J; Legg BA; Schenter GK; Li D; Park C; Ma H; Chun J
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1974-1983. PubMed ID: 37690305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Universal Gel Model with Volume Phase Transition.
    Manning GS
    Gels; 2020 Feb; 6(1):. PubMed ID: 32120904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exfoliation Behavior of van der Waals Strings: Case Study of Bi
    Dhar N; Syed N; Mohiuddin M; Jannat A; Zavabeti A; Zhang BY; Datta RS; Atkin P; Mahmood N; Esrafilzadeh D; Daeneke T; Kalantar-Zadeh K
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42603-42611. PubMed ID: 30426735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.
    Wang J; Nguyen AV
    Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus.
    Jazie AA; Albaaji AJ; Abed SA
    Air Qual Atmos Health; 2021; 14(11):1811-1824. PubMed ID: 34178182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical importance of van der Waals saddle and excited potential surface in C(
    Shen Z; Ma H; Zhang C; Fu M; Wu Y; Bian W; Cao J
    Nat Commun; 2017 Jan; 8():14094. PubMed ID: 28094253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air.
    Rokni H; Lu W
    Nat Commun; 2020 Nov; 11(1):5607. PubMed ID: 33154376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces.
    Barcellona P; Safari H; Salam A; Buhmann SY
    Phys Rev Lett; 2017 May; 118(19):193401. PubMed ID: 28548535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CFD study of the deep bed filtration mechanism for submicron/nano-particle suspension.
    Tung KL; Chang YL; Lai JY; Chang CH; Chuang CJ
    Water Sci Technol; 2004; 50(12):255-64. PubMed ID: 15686029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials.
    Stöhr M; Sadhukhan M; Al-Hamdani YS; Hermann J; Tkatchenko A
    Nat Commun; 2021 Jan; 12(1):137. PubMed ID: 33420079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.