These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 36567855)
1. Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. Zheng Z; Zhang S; Zhang H; Gao Z; Wang X; Liu X; Xue C; Yao L; Lu G Oxid Med Cell Longev; 2022; 2022():7965433. PubMed ID: 36567855 [TBL] [Abstract][Full Text] [Related]
2. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Minchev D; Kazakova M; Sarafian V Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499325 [TBL] [Abstract][Full Text] [Related]
3. Neuroinflammation in Parkinson's Disease and its Treatment Opportunities. Çınar E; Tel BC; Şahin G Balkan Med J; 2022 Sep; 39(5):318-333. PubMed ID: 36036436 [TBL] [Abstract][Full Text] [Related]
4. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Ahlers-Dannen KE; Spicer MM; Fisher RA Mol Pharmacol; 2020 Dec; 98(6):730-738. PubMed ID: 32015009 [TBL] [Abstract][Full Text] [Related]
5. The role of Toll-like receptors and neuroinflammation in Parkinson's disease. Heidari A; Yazdanpanah N; Rezaei N J Neuroinflammation; 2022 Jun; 19(1):135. PubMed ID: 35668422 [TBL] [Abstract][Full Text] [Related]
6. Ferroptosis in Parkinson's disease: glia-neuron crosstalk. Wang ZL; Yuan L; Li W; Li JY Trends Mol Med; 2022 Apr; 28(4):258-269. PubMed ID: 35260343 [TBL] [Abstract][Full Text] [Related]
7. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Zheng T; Zhang Z Neurochem Int; 2021 Sep; 148():105094. PubMed ID: 34097990 [TBL] [Abstract][Full Text] [Related]
8. Alpha-synuclein dynamics in induced pluripotent stem cell-derived dopaminergic neurons from a Parkinson's disease patient (PARK4) with SNCA triplication. Fukusumi H; Togo K; Sumida M; Nakamori M; Obika S; Baba K; Shofuda T; Ito D; Okano H; Mochizuki H; Kanemura Y FEBS Open Bio; 2021 Feb; 11(2):354-366. PubMed ID: 33301617 [TBL] [Abstract][Full Text] [Related]
9. Peiminine Reduces ARTS-Mediated Degradation of XIAP by Modulating the PINK1/Parkin Pathway to Ameliorate 6-Hydroxydopamine Toxicity and α-Synuclein Accumulation in Parkinson's Disease Models In Vivo and In Vitro. Hsu YL; Hung HS; Tsai CW; Liu SP; Chiang YT; Kuo YH; Shyu WC; Lin SZ; Fu RH Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638579 [TBL] [Abstract][Full Text] [Related]
10. The Role of Non-Coding RNAs in the Pathogenesis of Parkinson's Disease: Recent Advancement. Zhang H; Yao L; Zheng Z; Koc S; Lu G Pharmaceuticals (Basel); 2022 Jun; 15(7):. PubMed ID: 35890110 [TBL] [Abstract][Full Text] [Related]
11. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. Mazzulli JR; Zunke F; Tsunemi T; Toker NJ; Jeon S; Burbulla LF; Patnaik S; Sidransky E; Marugan JJ; Sue CM; Krainc D J Neurosci; 2016 Jul; 36(29):7693-706. PubMed ID: 27445146 [TBL] [Abstract][Full Text] [Related]
12. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson's disease. Yasuda T; Mochizuki H Apoptosis; 2010 Nov; 15(11):1312-21. PubMed ID: 20221696 [TBL] [Abstract][Full Text] [Related]
13. VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease. Tang FL; Erion JR; Tian Y; Liu W; Yin DM; Ye J; Tang B; Mei L; Xiong WC J Neurosci; 2015 Jul; 35(29):10613-28. PubMed ID: 26203154 [TBL] [Abstract][Full Text] [Related]
14. The MHC class II transactivator modulates seeded alpha-synuclein pathology and dopaminergic neurodegeneration in an in vivo rat model of Parkinson's disease. Jimenez-Ferrer I; Bäckström F; Dueñas-Rey A; Jewett M; Boza-Serrano A; Luk KC; Deierborg T; Swanberg M Brain Behav Immun; 2021 Jan; 91():369-382. PubMed ID: 33223048 [TBL] [Abstract][Full Text] [Related]
16. Role of microglial metabolic reprogramming in Parkinson's disease. Huang ZP; Liu SF; Zhuang JL; Li LY; Li MM; Huang YL; Chen YH; Chen XR; Lin S; Ye LC; Chen CN Biochem Pharmacol; 2023 Jul; 213():115619. PubMed ID: 37211170 [TBL] [Abstract][Full Text] [Related]
17. Determinants of dopaminergic neuron loss in Parkinson's disease. Surmeier DJ FEBS J; 2018 Oct; 285(19):3657-3668. PubMed ID: 30028088 [TBL] [Abstract][Full Text] [Related]
18. Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease. Rauschenberger L; Behnke J; Grotemeyer A; Knorr S; Volkmann J; Ip CW Neurobiol Dis; 2022 Sep; 171():105798. PubMed ID: 35750147 [TBL] [Abstract][Full Text] [Related]
19. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. Liu G; Yu J; Ding J; Xie C; Sun L; Rudenko I; Zheng W; Sastry N; Luo J; Rudow G; Troncoso JC; Cai H J Clin Invest; 2014 Jul; 124(7):3032-46. PubMed ID: 24865427 [TBL] [Abstract][Full Text] [Related]
20. Dl-3-n-Butylphthalide Rescues Dopaminergic Neurons in Parkinson's Disease Models by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. Que R; Zheng J; Chang Z; Zhang W; Li H; Xie Z; Huang Z; Wang HT; Xu J; Jin D; Yang W; Tan EK; Wang Q Front Immunol; 2021; 12():794770. PubMed ID: 34925379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]