BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36568360)

  • 1. Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes.
    Jia Z; Zhang X
    Front Genet; 2022; 13():923339. PubMed ID: 36568360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
    Zhang X; Zhao XM; He K; Lu L; Cao Y; Liu J; Hao JK; Liu ZP; Chen L
    Bioinformatics; 2012 Jan; 28(1):98-104. PubMed ID: 22088843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EIEPCF: accurate inference of functional gene regulatory networks by eliminating indirect effects from confounding factors.
    Peng H; Xu J; Liu K; Liu F; Zhang A; Zhang X
    Brief Funct Genomics; 2023 Aug; ():. PubMed ID: 37642217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AGRN: accurate gene regulatory network inference using ensemble machine learning methods.
    Alawad DM; Katebi A; Kabir MWU; Hoque MT
    Bioinform Adv; 2023; 3(1):vbad032. PubMed ID: 37038446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of genetic regulatory networks with regulatory hubs using vector autoregressions and automatic relevance determination with model selections.
    Chen CK
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):121-143. PubMed ID: 34963205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference.
    Zhang X; Liu K; Liu ZP; Duval B; Richer JM; Zhao XM; Hao JK; Chen L
    Bioinformatics; 2013 Jan; 29(1):106-13. PubMed ID: 23080116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks.
    Ahmed SS; Roy S; Kalita J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):56-70. PubMed ID: 29994618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks based on the Light Gradient Boosting Machine.
    Du Z; Zhong X; Wang F; Uversky VN
    Comput Biol Chem; 2022 Dec; 101():107769. PubMed ID: 36182867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulatory network inference using PLS-based methods.
    Guo S; Jiang Q; Chen L; Guo D
    BMC Bioinformatics; 2016 Dec; 17(1):545. PubMed ID: 28031031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks.
    Zhang X; Zhao J; Hao JK; Zhao XM; Chen L
    Nucleic Acids Res; 2015 Mar; 43(5):e31. PubMed ID: 25539927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis.
    Ni Y; Aghamirzaie D; Elmarakeby H; Collakova E; Li S; Grene R; Heath LS
    Front Plant Sci; 2016; 7():1936. PubMed ID: 28066488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NSCGRN: a network structure control method for gene regulatory network inference.
    Liu W; Sun X; Yang L; Li K; Yang Y; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35554485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.